2025开年,AI技术打得火热,正在改变程序员的职业命运:
-
阿里云核心业务全部接入Agent体系;
-
字节跳动30%后端岗位要求大模型开发能力;
-
腾讯、京东、百度开放招聘技术岗,80%与AI相关……
大模型正在重构技术开发范式,传统CRUD开发模式正在被AI原生应用取代!
如果你也有这样的技术焦虑——即想要真正理解一个 LLM 的构建细节,并掌握其底层实现方式,那么接下来的这本书,值得你从头到尾读上三遍。
一本书,带你从零实现大模型
对GPT大模型感兴趣的有福了!这本书的名字叫 《Build a Large Language Model (From Scratch)》 也就是 从零开始构建大语言模型!
虽然这是一本英文书、而且还没正式出版,但是他真的可以帮你使用python从零构建一个自己的大模型!
《Build a Large Language Model (From Scratch)》 是机器学习领域权威作者 Sebastian Raschka 的最新力作。
这老哥在 X 上有超过 30 万粉丝!他曾出版过畅销书《Python 机器学习》,拥有极强的“代码+理论”教学功底。
这本书不仅讲解了 Transformer 的核心机制,更配备了高质量的开源代码仓库,让你真正“看得懂 + 跑得通 + 改得动”。这个 GitHub 仓库目前斩获 44.2K 的 Star!
为了加强读者的动手能力,这本书主要使用的是 pytorch 框架,而不是依靠各种库。通过这种方法,加上大量的图表和插图让大家可以彻底了解llm的工作原理。
内容结构:七大模块覆盖全流程
书籍围绕 LLM 的完整生命周期设计,共分为三大阶段:
第一部分理解大型语言模型: 介绍了 LLM 的基本概念、transformer架构以及训练大型语言模型所需的基础知识。
第二部分文本数据处理: 详细讲解了如何准备和处理用于训练 LLM 的文本数据。
第三部分注意力机制编程: 深入探讨了注意力机制的原理及其在 LLM 中的应用,并通过代码实现了这些机制。
第四部分从零实现 GPT 模型: 通过一步步的指导,读者将学会如何从头开始构建一个 GPT 模型,并用于生成文本。
第五部分无标签数据的预训练: 讨论了如何在没有标签的数据上进行预训练,使模型能够捕捉语言的复杂性和上下文关系。
第六部分模型微调: 解释了如何在特定任务或领域的数据上微调预训练的模型,以提升其在特定应用中的表现。
第七部分*微调以遵循指令*: Instruction Tuning 与有害输出的控制手段
通过本书,大家不仅可以掌握 LLM 的理论知识,还能通过动手实践,学习如何从头构建一个功能强大的语言模型。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓