如何调整yarn.nodemanager.vmem-pmem-ratio参数?

调整 yarn.nodemanager.vmem-pmem-ratio 参数的步骤如下:

 1. 打开 YARN 配置文件
找到 yarn-site.xml 文件,该文件通常位于 Hadoop 配置目录中,例如 /etc/hadoop/conf 或 /opt/module/hadoop-3.1.3/etc/hadoop。

 2. 找到并修改 yarn.nodemanager.vmem-pmem-ratio 参数
在 yarn-site.xml 文件中,找到 <name>yarn.nodemanager.vmem-pmem-ratio</name> 配置项。如果该配置项不存在,可以手动添加。

默认值:2.1,表示每使用 1MB 的物理内存,最多可以使用 2.1MB 的虚拟内存。
修改建议:根据集群的实际情况调整该值。如果集群的虚拟内存压力较大,可以适当增加该值(例如设置为 2.5 或更高),但需确保不会导致系统不稳定。

修改后的配置示例:

xml
<property>
    <name>yarn.nodemanager.vmem-pmem-ratio</name>
    <value>2.5</value>
</property>

 3. 重启 YARN 服务
修改配置文件后,需要重启 YARN 服务以使配置生效。

 在集群环境中,可以通过以下命令重启 YARN:

bash
  yarn-daemon.sh stop resourcemanager
  yarn-daemon.sh start resourcemanager


 或者使用集群管理工具(如 Ambari 或 Cloudera Manager)进行重启操作。

 注意事项
监控内存使用:调整参数后,建议通过 YARN 的资源管理器界面(如 http://<ResourceManager-IP>:8088)监控作业的内存使用情况,确保调整后的配置能够满足需求。
节点差异化配置:如果集群中的节点硬件配置差异较大,可以根据不同节点的实际情况分别调整 yarn-site.xml 文件。
禁用虚拟内存检查:如果虚拟内存限制导致作业频繁失败,也可以考虑将 yarn.nodemanager.vmem-check-enabled 设置为 false,但不推荐此操作,因为它会关闭虚拟内存的监控。

通过以上步骤,您可以根据集群的实际情况调整 yarn.nodemanager.vmem-pmem-ratio 参数,以优化作业的内存使用。

### YARN任务资源配置与内存使用方法 #### 参数解析 在YARN环境中,合理配置任务资源和内存对于提升集群性能至关重要。以下是几个关键参数及其作用: 1. **yarn.nodemanager.resource.memory-mb** 这一参数用于设定NodeManager可用的总物理内存大小(单位为MB),从而控制整个节点上的容器所能消耗的最大物理内存量[^1]。 2. **yarn.nodemanager.vmem-pmem-ratio** 定义了虚拟内存与物理内存的比例关系。具体来说,它规定了当任务占用1 MB物理内存时,允许其额外使用的最大虚拟内存量是多少。 3. **yarn.nodemanager.pmem-check-enabled** 此布尔型参数决定了是否启用线程来监控并验证各任务实际使用的物理内存量是否超出限定范围。 4. **-ys (或 --num-executor-slots)** 对于某些框架如Flink而言,此选项指定了每个TaskManager应分配到多少CPU核数作为计算单元的一部分[^2]。 5. **其他相关参数** 当运行基于Spark的任务时,还需要考虑由ResourceManager负责调度containers以及启动ApplicationMasters的过程;其中AM主要承担请求Executors所需资源的工作职能[^3]。 #### 实际操作指南 为了实现更高效的资源配置,请遵循以下建议: - 准确评估单台机器的实际硬件规格,并据此调整`yarn.nodemanager.resource.memory-mb`值以反映真实的可用RAM容量。 - 如果应用程序对虚实内存转换敏感,则需谨慎设置`yarn.nodemanager.vmem-pmem-ratio`数值,通常推荐保持默认或者依据测试结果微调。 - 开启/关闭`yarn.nodemanager.pmem-check-enabled`取决于目标环境的安全性和稳定性需求——开发阶段可能倾向于禁用以便快速迭代调试,而生产环境下则宜开启保障长期稳定运作。 下面提供一段Python脚本示例展示如何动态修改这些参数并通过命令行提交job: ```python import subprocess def submit_yarn_job(memory_mb, vmem_ratio, enable_pmem_check=False): command = [ 'yarn', '--conf', f'yarn.nodemanager.resource.memory-mb={memory_mb}', '--conf', f'yarn.nodemanager.vmem-pmem-ratio={vmem_ratio}' ] if enable_pmem_check: command.extend(['--conf', 'yarn.nodemanager.pmem-check-enabled=true']) else: command.extend(['--conf', 'yarn.nodemanager.pmem-check-enabled=false']) result = subprocess.run(command, capture_output=True, text=True) return result.stdout print(submit_yarn_job(8192, 2.1)) ``` 上述代码片段展示了通过编程方式更改YARN的相关配置项并向集群提交作业的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值