题目:
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache
类:
LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4] 解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
方法:哈希表+双向链表
算法
LRU缓存机制可以通过哈希表+双向链表实现,用一个哈希表和双向链表维护所有在缓存中的键值对。
1.双向链表按照被使用的顺序存储这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的是最久未使用的。
2.哈希表为普通映射,键就是缓存数据的键,值就是该缓存数据在双向链表的节点。
对于get()操作,先判断key是否在哈希表中存在:
如果不存在,返回-1;
如果存在,则key对应的节点是最近被使用的节点,通过哈希表的映射找到在双向链表的存储位置,并将其移动到双向链表的头部,然后返回该节点的值。
对于put()操作,先判断key是否存在:
如果key不存在,根据key和value创建节点,在双向链表的头部添加该节点,并将key和该节点添加进哈希表。然后判断双向链表的节点是否超出了容量,如果超出容量,删除双向链表的尾部节点,并删除哈希表中对应的项。
如果key存在,先通过哈希表定位双向链表中的位置,然后将节点的值更新为value,并将节点移动到头部。
上述各项操作中,访问哈希表的时间复杂度为 O(1),在双向链表的头部添加节点、在双向链表的尾部删除节点的复杂度也为 O(1)。而将一个节点移到双向链表的头部,可以分成「删除该节点」和「在双向链表的头部添加节点」两步操作,都可以在 O(1) 时间内完成。
在双向链表的实现中,使用一个伪头部(dummy head)和伪尾部(dummy tail)标记界限,这样在添加节点和删除节点的时候就不需要检查相邻的节点是否存在。
Java代码:
class LRUCache {
class DLinkedNode{
int key;
int value;
DLinkedNode prev;
DLinkedNode next;
public DLinkedNode(){}
public DLinkedNode(int _key,int _value){key=_key;value=_value;}
}
private Map<Integer,DLinkedNode>cache=new HashMap<Integer,DLinkedNode>();
private int size;
private int capacity;
private DLinkedNode head,tail;
public LRUCache(int capacity) {
this.size=0;
this.capacity=capacity;
//使用伪头部和伪尾部节点
head=new DLinkedNode();
tail=new DLinkedNode();
head.next=tail;
tail.prev=head;
}
public int get(int key) {
DLinkedNode node=cache.get(key);
if(node==null){
return -1;
}
//如果key存在,先通过哈希表定位,再移到头部
moveTohead(node);
return node.value;
}
public void put(int key, int value) {
DLinkedNode node=cache.get(key);
if(node==null){
//如果key不存在,创建一个新的节点
DLinkedNode newnode=new DLinkedNode(key,value);
//添加进哈希表
cache.put(key,newnode);
//添加至头部
addToHead(newnode);
++size;
if(size>capacity){
//如果超出容量,删除双向链表尾部节点
DLinkedNode tail=removeTail();
//删除哈希表中对应的项
cache.remove(tail.key);
--size;
}
}
else{
//如果key存在,先通过哈希表定位,再修改value,并移到头部
node.value=value;
moveTohead(node);
}
}
private void addToHead(DLinkedNode node){
node.prev=head;
node.next=head.next;
head.next.prev=node;
head.next=node;
}
private void removeNode(DLinkedNode node){
node.prev.next=node.next;
node.next.prev=node.prev;
}
private void moveTohead(DLinkedNode node){
removeNode(node);
addToHead(node);
}
private DLinkedNode removeTail(){
DLinkedNode res=tail.prev;
removeNode(res);
return res;
}
}