陈塘关、哪吒行宫、金光洞……这些景点蹭上了《哪吒2》的热度了

电影《哪吒之魔童闹海》最近话题度简直不要太高,记者注意到,趁着电影的泼天流量,有不少网友开始推荐起了“哪吒游”,一拨与哪吒文化相关的景点在社交平台上的讨论度正在上升。

_哪吒回了陈塘关_陈塘关哪吒出世打一生肖

引起网友们讨论热潮的一个地点是陈塘关。陈塘关是出自明代小说《封神演义》的地点,小说设定为陈塘关是李靖、哪吒一家居住过的地方。神话中的地点没有确切对应的地理位置,但陈塘关这一地方可能是有现实原型或根据民间文化、传说艺术加工而来。当前知名度比较高的两处“陈塘关”分别位于天津和四川宜宾。

“从地铁陈塘庄站出来,到事发地影院沉浸式看电影,看完电影找一家天津菜馆,品尝一道干煸鱿鱼须,之后到哪吒小镇和哪吒的身份证合影。这一天的哪吒主题游就圆满了。”这是旅游博主们推荐的“天津哪吒主题旅游线路”,哪吒小镇里印着“120103”开头(天津市河西区)的“哪吒身份证”,成为不少网友拍照留影的必选项。

陈塘关哪吒出世打一生肖_哪吒回了陈塘关_

哪吒回了陈塘关_陈塘关哪吒出世打一生肖_

天津当地流传着哪吒三太子出生及大闹东海龙宫的传说,又因此地靠近海河,与哪吒闹海的神话传说也有一定的地理契合度,当地的陈塘庄曾经还有哪吒庙等遗址,但是现已不存。2012年,哪吒闹海神话传说入选天津市河西区非物质文化遗产名录,今年2月5日天津文旅还借势宣传了一拨天津的哪吒文化。

另一边,四川宜宾的哪吒文化也相当的有话题度,宜宾翠屏山上有个道观叫“哪吒行宫”,宜宾南广镇附近还有哪吒洞、九湾河等相关地名,1992年,四川人民出版社还专门出过一本名为《哪吒与宜宾》的书,书中认为哪吒闹海发生在宜宾合江门,宜宾翠屏区还被中国民间文艺家协会确定为“中国哪吒文化之乡”。

现下,宜宾的哪吒行宫、有哪吒重生传说的天池公园还身阁、传说是三太子敖丙化身的龙脊石、哪吒古庙、将军石等地都是宜宾哪吒游攻略中的热门打卡点。还有一个讨论度比较高的景点是四川江油的金光洞,在民间传说中这里是哪吒师傅太乙真人的道场,电影中太乙真人一口四川话也是由此设定而来。

除天津、四川两地外,国内很多地方都有哪吒传说,比如江苏吴江的著名景点报恩寺中也有一尊哪吒三太子,河南西峡县奎文村有哪吒祖庙,闽南文化区中哪吒的信徒也不少,还诞生了哪吒文化与电子音乐的奇妙组合电音三太子等有趣的民俗活动。民俗文化研究专家张仲在自己的书中《天津卫掌故》中提出,人们喜爱哪吒,是对生活的丰富想象,更是民间对“英雄崇拜”的一种延续,蹭上哪吒IP的热度发展地方文旅经济未尝不是好事。

<< 这是一个典型的图论问题,具体来说是一个**带权无向图的最大哈密顿路径问题**。我们需要在给定的图中寻找一条不经过重复节点且边权重之和最大的路径。 要解决这个问题,我们可以使用动态规划结合状态压缩的方法(即基于DFS的状态压缩DP)来完成: --- ### 解决方案及步骤 #### 1. 动态规划定义与转移方程 我们可以通过以下公式进行动态规划: - 定义 `dp[S][i]` 表示当前已经访问了集合 S 中的所有节点,并且最后一个访问的是节点 i 的情况下所能得到的最大路径长度。 - 初始条件:当只包含单个节点时,如 `S = {i}` ,那么此时 `dp[1 << (i - 1)][i] = 0` (因为还没走过任何路)。 - 状态转移:如果现在处于状态 `(S, j)` 并从节点 k 转移到节点 j,则更新 dp 值: ```cpp if ((S & (1 << (k - 1))) != 0) { dp[new_S][j] = max(dp[new_S][j], dp[S][k] + weight[k][j]); } ``` 最终答案就是所有可能终点情况下的最大值。 下面是具体的 C++ 实现代码: ```cpp #include <bits/stdc++.h> using namespace std; const int INF = INT_MIN; int n, m; long long dist[25][25]; // 存储两点之间的距离,默认初始化为负无穷大表示不可达 long long dp[1 << 20][25]; void solve() { cin >> n >> m; // 输入节点数量以及道路数量 for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) dist[i][j] = (i == j ? 0 : INF); // 初始化邻接矩阵,对角线设为0,其余初始为-INF for(int i=0;i<m;i++){ int u,v,w; cin>>u>>v>>w; dist[u][v]=dist[v][u]=max((long long)w,dist[u][v]); // 更新最大边长 } memset(dp, 0x8f,sizeof(dp)); // 将整个数组填充成最小值(-INF) for(int i=1;i<=n;i++) dp[(1<<(i-1))][i] = 0;// 每个起点开始都是零成本 // 开始枚举子集 for(long long mask=1;mask<(1LL<<n);mask++){// 对于每个子集掩码 for(int last=1;last<=n;last++){ // 枚举最后到达的位置last if(mask&(1LL<<(last-1))){ for(int prev=1;prev<=n;prev++){ // 再次遍历其他位置作为前驱结点 if(prev!=last && (mask&(1LL<<(prev-1)))){ // 必须已经在子集中并且不是同一个节点 if(dist[prev][last]!=INF){ dp[mask][last] = max(dp[mask][last], dp[mask^(1LL<<(last-1))][prev]+dist[prev][last]); } } } } } } long long ans = 0; // 计算结果: 最终结果应是对于所有的终点的情况取最大值 for(int s=1;s<(1<<n);s++) { for(int e=1;e<=n;e++) { if(s & (1 <<(e-1))) ans=max(ans, dp[s][e]); } } cout << ans << "\n"; } int main(){ ios::sync_with_stdio(false); cin.tie(NULL); solve(); } ``` --- ### **代码解析** 1. **输入读入部分**: 我们将所有的边信息存储到二维数组 `dist[][]` 当中并维护一个最大值表用来记录各个连接中的最远距离。 2. **动态规划初始化**: 使用二进制位掩码表示哪些顶点已经被访问过。例如 `101b` 表明第1号和第3号点已被选作途经站点。同时设置好边界条件——单独考虑单一端点的情形下路程均为0. 3. **核心递推逻辑**: 根据先前所设定规则不断迭代直至得出完整解空间内最优路线总长。 4. **查找全局最佳解答**: 经由双重循环搜寻所有潜在结尾点对应的最佳累积分值得出目标输出数值。 --- ### 时间复杂度分析 由于采用了状态压缩技术,时间复杂度大约为 O(n * 2^n),其中 n ≤ 20,因此该算法完全可以胜任题目规模限制内的计算需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值