python打卡day38@浙大疏锦行

知识点回顾:

  1. Dataset类的__getitem__和__len__方法(本质是python的特殊方法)
  2. Dataloader类
  3. minist手写数据集的了解

作业:了解下cifar数据集,尝试获取其中一张图片

一、首先加载CIFAR数据集

import torch
import torchvision
import torchvision.transforms as transforms
from matplotlib import pyplot as plt

# 定义数据转换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载训练集
trainset = torchvision.datasets.CIFAR10(
    root='./data', 
    train=True,
    download=True, 
    transform=transform
)

二、创建DataLoader并获取单张图片

# 创建DataLoader
trainloader = torch.utils.data.DataLoader(
    trainset, 
    batch_size=4,
    shuffle=True
)

# 获取一个batch的数据
dataiter = iter(trainloader)
images, labels = next(dataiter)

# 显示第一张图片
def imshow(img):
    img = img / 2 + 0.5  # 反归一化
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

imshow(images[0])
print('Label:', trainset.classes[labels[0]])

三、直接通过Dataset获取单张图片

# 直接通过Dataset获取第100张图片
image, label = trainset[100]

# 显示图片
imshow(image)
print('Label:', trainset.classes[label])

说明:
1. Dataset 类的两个核心方法:
   
   - __len__ : 返回数据集大小
   - __getitem__ : 根据索引返回单个样本
2. DataLoader 主要参数:
   
   - batch_size : 每次加载的样本数
   - shuffle : 是否打乱数据顺序
3. CIFAR-10数据集包含10个类别:

classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'truck']

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值