最后是今天给大家分享的一些独家干货:
【Android开发核心知识点笔记】

【Android思维脑图(技能树)】

【Android核心高级技术PDF文档,BAT大厂面试真题解析】

【Android高级架构视频学习资源】
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
形态学梯度
形态学梯度能够描述目标的边界,根据图像腐蚀和膨胀与原图之间的关系计算得到,形态学梯度可以分为基本梯度、内部梯度和外部梯度。基本梯度是原图像膨胀后图像和腐蚀后图像间的差值图像,内部梯度图像是原图像和腐蚀后图像间的差值图像,外部梯度是膨胀后图像和原图像间的差值图像。
dst=morph_grad(src,element)=dilate(src,element)−erode(src,element)\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )dst=morph_grad(src,element)=dilate(src,element)−erode(src,element)
顶帽
图像顶帽运算是原图像与开运算结果之间的差值,往往用来分离比邻近点亮一些的斑块,因为开运算带来的结果是放大了裂缝或者局部低亮度的区域,因此,从原图中减去开运算后的图,得到的效果图突出了比原图轮廓周围的区域更明亮的区域。
dst=tophat(src,element)=src−open(src,element)\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )dst=tophat(src,element)=src−open(src,element)
黑帽
图像黑帽运算是与图像顶帽运算相对应的形态学操作,与顶帽运算相反,黑帽运算是原图像与闭运算结果之间的差值,往往用来分离比邻近点暗一些的斑块。
dst=blackhat(src,element)=close(src,element)−src\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}dst=blackhat(src,element)=close(src,element)−src
击中不击中
击中击不中变换是比图像腐蚀要求更加苛刻的一种形态学操作,图像腐蚀只需要图像能够将结构元素中所有非0元素包含即可,但是击中击不中变换要求原图像中需要存在与结构元素一模一样的结构,即结构元素中非0元素也需要同时被考虑。
API
public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue)
-
参数一:src,输入的待形态学操作图像,图像的通道数可以是任意的,但是图像的数据类型必须是
CV_8U,CV_16U,CV_16S,CV_32F或CV_64F -
参数二:dst,形态学操作后的输出图像,与输入图像src具有相同的尺寸和数据类型
-
参数三:op,形态学操作类型的标志
| 标志位 | 值 | 作用 |
|---|---|---|
| MORPH_ERODE | 0 | 图像腐蚀 |
| MORPH_DILATE | 1 | 图形膨胀 |
| MORPH_OPEN | 2 | 开操作 |
| MORPH_CLOSE | 3 | 闭操作 |
| MORPH_GRADIENT | 4 | 形态学梯度 |
| MORPH_TOPHAT | 5 | 顶帽操作 |
| MORPH_BLACKHAT | 6 | 黑帽操作 |
| MORPH_HITMISS | 7 | 击中击不中运算 |
-
参数四:kernel,用于形态学操作的结构元素,可以自己定义,也可以用
getStructuringElement()函数生成 -
参数五:anchor,中心点在结构元素中的位置,默认参数为结构元素的几何中心点
-
参数六:iterations,操作次数,默认值为1
-
参数七:borderType,像素外推法选择标志
-
参数八:borderValue,使用边界不变外推法时的边界值
操作
/**
- 形态学
- author: yidong
- 2020/7/5
*/
class MorphologyExActivity : AppCompatActivity() {
private lateinit var mBinding: ActivityMorphologyExBinding
private lateinit var mBinary: Mat
private var mFlag = Imgproc.MORPH_OPEN
set(value) {
field = value
doMorphology(value, mSize.toDouble())
}
private var mSize = 3
set(value) {
field = value
doMorphology(mFlag, value.toDouble())
}
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
mBinding = DataBindingUtil.setContentView(this, R.layout.activity_morphology_ex)
mBinding.seekbar.setOnSeekBarChangeListener(object : SeekBar.OnSeekBarChangeListener {
override fun onProgressChanged(seekBar: SeekBar?, progress: Int, fromUser: Boolean) {
mSize = progress
mBinding.tvSize.text = progress.toString()
}
override fun onStartTrackingTouch(seekBar: SeekBar?) {
}
override fun onStopTrackingTouch(seekBar: SeekBar?) {
}
})
mBinary = Mat()
val bgr = Utils.loadResource(this, R.drawable.number)
val gray = Mat()
Imgproc.cvtColor(bgr, gray, Imgproc.COLOR_BGR2GRAY)
Imgproc.threshold(gray, mBinary, 125.0, 255.0, Imgproc.THRESH_BINARY_INV)
mBinding.ivLena.showMat(mBinary)
bgr.release()
gray.release()
}
最后
我坚信,坚持学习,每天进步一点,滴水穿石,我们离成功都很近!
以下是总结出来的字节经典面试题目,包含:计算机网络,Kotlin,数据结构与算法,Framework源码,微信小程序,NDK音视频开发,计算机网络等。
字节高级Android经典面试题和答案


网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
可以戳这里获取](https://bbs.csdn.net/topics/618156601)**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

被折叠的 条评论
为什么被折叠?



