数学基石与模型优化

"梯度下降的几何解释与正则化技术"
核心内容

  1. 优化理论

    • 梯度下降三种变体对比(BGD/SGD/mini-batch SGD收敛速度分析)
    • 动量算法数学推导(更新公式:v_t = γv_{t-1} + η∇θ_t)
  2. 正则化技术

    • L1正则化路径分析(坐标轴下降法求解Lasso)
    • Dropout在神经网络中的实现原理
  3. 实战案例

    • 手写数字识别(MNIST数据集 + L2正则化防止过拟合)

数学公式

 
L(w) = Σ(y_i - f(x_i;w))² + λ||w||²  # L2正则化损失函数

阅读目标:掌握核心数学工具,能够设计优化策略解决实际问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值