"梯度下降的几何解释与正则化技术"
核心内容:
-
优化理论
- 梯度下降三种变体对比(BGD/SGD/mini-batch SGD收敛速度分析)
- 动量算法数学推导(更新公式:v_t = γv_{t-1} + η∇θ_t)
-
正则化技术
- L1正则化路径分析(坐标轴下降法求解Lasso)
- Dropout在神经网络中的实现原理
-
实战案例
- 手写数字识别(MNIST数据集 + L2正则化防止过拟合)
数学公式:
L(w) = Σ(y_i - f(x_i;w))² + λ||w||² # L2正则化损失函数
阅读目标:掌握核心数学工具,能够设计优化策略解决实际问题。