生成式AI与扩散模型

"Stable Diffusion原理与商业应用探索"
核心内容

  1. 扩散过程数学建模

    • 前向扩散方程(逐步添加高斯噪声)
    • 逆向过程(DDIM算法加速采样)
  2. 商业应用

    • 设计师工具(MidJourney提示词工程指南)
    • 内容审核(Stability AI的Safety Filter实现)
  3. 技术前沿

    • 文生视频(Runway Gen-2技术解析)
    • 多模态生成(CLIP模型图文对齐原理)

代码片段

 
# Stable Diffusion推理
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
image = pipe("A cat sitting on a sofa").images[0]
image.save("generated_image.jpg")

阅读目标:把握生成式AI最新发展,理解技术边界与应用场景。

### 扩散模型的技术原理 扩散模型的核心思想在于模仿物理世界中的扩散过程,通过逐步向数据中引入噪声并随后移除这些噪声来生成新的样本。具体来说,在训练过程中,扩散模型会先将原始数据逐渐加入高斯噪声直至完全随机化;而在推理阶段,则反向操作——从纯噪声出发,一步步去除其中的干扰成分,最终恢复出清晰的目标对象[^1]。 为了更直观理解这一机制,可以将其类比为照片退化再修复的过程:假设有一张完美无瑕的照片,随着时间流逝它可能因各种原因变得模糊不清甚至难以辨认。如果能掌握使图像变差的具体规律,那么理论上也就能逆向执行该流程,把损坏严重的图片还原成最初的模样。这正是扩散模型所做的事情,只不过是在数字化的数据空间里完成上述转变[^2]。 以下是简化版Python伪代码展示如何构建基本框架: ```python import torch.nn as nn class DiffusionModel(nn.Module): def __init__(self, noise_steps, beta_start=0.0001, beta_end=0.02): super(DiffusionModel, self).__init__() self.noise_steps = noise_steps self.beta = torch.linspace(beta_start, beta_end, steps=noise_steps) def forward(self, x, t): sqrt_alpha_hat_t = ((1-self.beta).cumprod(dim=0)[t])**0.5 epsilon_t = torch.randn_like(x) noisy_x = sqrt_alpha_hat_t * x + (1-sqrt_alpha_hat_t**2)**0.5 * epsilon_t predicted_epsilon = self.denoising_model(noisy_x, t) # Placeholder for actual model call. loss = nn.functional.mse_loss(predicted_epsilon, epsilon_t) return loss def sample(self, shape): with torch.no_grad(): x = torch.randn(shape) for i in reversed(range(1,self.noise_steps)): t = torch.full((shape[0],),i,dtype=torch.long) alpha_t = 1 - self.beta[t] alpha_cumprod_prev_t = ((1-self.beta[:t]).prod()) if t>0 else torch.tensor([1]) sigma = ((1-alpha_cumprod_prev_t)/alpha_t*(1-(alpha_cumprod_prev_t/alpha_t))) ** 0.5 z = torch.randn_like(x) if i > 1 else 0 pred_noise = self.denoising_model(x,t.unsqueeze(-1)) mean_theta = 1/torch.sqrt(alpha_t)*(x-pred_noise*torch.sqrt(1-alpha_cumprod_prev_t)/torch.sqrt(1-alpha_t)) x = mean_theta + sigma*z return x.clamp(-1,1) ``` 此段代码定义了一个简单的扩散模型结构及其采样逻辑。 对于希望深入研究或者实际动手实践的人来说,网络上存在大量资源可供参考学习。例如某些专注于人工智能教育平台提供了详尽的大规模预训练模型教学路线图,涵盖了理论基础到项目实操等多个方面[^3]。 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值