return df_fund
假如你想获取易方达中小盘基金的信息,可以基于上面的自定义函数 get_fund
,使用如下的代码:
# 110011.OF,易方达中小盘
df_fund = get_fund(‘110011.OF’,df_fund_info)
df_fund
获取的信息如下:
计算基金规模和收益情况
接下来,咱们还需要获取两个信息,基金规模和基金近几年的收益情况。
基金规模,可以从一个角度来观察该基金在市场上的受欢迎度,一般来说,规模较大的基金,说明该基金过往的表现应该还是可以的。不过这里也有两点需要注意:
-
基金过往业绩并不代表未来依然会如此;
-
基金规模小,并不一定说明该基金未来表现会不好。
除了基金规模,另一个咱们经常关注的,也是基金营销机构经常拿出来宣传的,就是基金的过往收益情况。
基金规模的计算公式如下:
基金规模亿元基金份额数量基金单位净值
在 tushare 中 基金份额数量由函数 fund_share
来获取,基金单位净值(unit_nav)数据由函数 fund_nav
来获取。
此外,在计算基金的过往年度收益时,也是基于其累计净值(accum_nav)来实现的。
因此,阳哥将基金规模获取过程和基金近几年收益情况计算合并在一个自定义函数里,代码如下:
# 获取单支基金的年度收益,基金规模等信息
def get_returns(fund_code,start_year):
df_fund_nav = pro.fund_nav(ts_code=fund_code)
df_fund_nav[‘date’] = pd.to_datetime(df_fund_nav[‘end_date’])
df_fund_nav = df_fund_nav.set_index(‘date’).sort_index()
years = df_fund_nav[‘accum_nav’].resample(‘AS’).sum().to_period(‘A’)
# 获取年度数据,类型为 pandas 的 period
years = years.index.tolist()
# 有些基金的开始日期晚于2018年,需要对齐列,补空白
year_list = [yr.year for yr in years if yr.year>=start_year]
# 将 period 时间数据转为 string 的年度数据
years = [str(yr.year) for yr in years]
df_yrs_index = pd.DataFrame()
for yr in years:
df_yr_index = df_fund_nav.loc[yr].tail(1)
df_yrs_index = df_yrs_index.append(df_yr_index)
df_yrs = df_fund_nav.head(1).append(df_yrs_index)
# 计算每年的收益率,即涨跌幅度
df_yrs[‘returns’] = df_yrs[‘accum_nav’].pct_change()
# 删除收益率为 NA 的行 (第1天有数据记录的日期)
df_yrs = df_yrs.dropna(subset=[‘returns’])
# 筛选自开始年份以来的数据
df_yrs = df_yrs.loc[str(start_year):]
df_yrs = df_yrs.reset_index()
df_yrs[‘year’] = df_yrs[‘date’].dt.year
# 透视表
df_yr_returns = pd.pivot_table(
df_yrs, index=[‘ts_code’],
values=[‘returns’], columns=[‘year’], fill_value=“”
)
# 将多层索引转变为单层索引
df_yr_returns = df_yr_returns[‘returns’]
df_yr_returns = df_yr_returns.reset_index()
df_yr_returns.columns.name = None
df_yr_returns = df_yr_returns.rename(columns={‘ts_code’:‘fund_code’})
# 基金份额
df_fund_share = pro.fund_share(ts_code=fund_code).head(1)
df_fund_share.columns = [‘fund_code’, ‘fd_share_date’, ‘fd_share’, ‘fund_type’, ‘market’]
# fd_share,单位是 万份
fd_share_date = df_fund_share[‘fd_share_date’].values[0] # 份额对应的日期
# 份额日期的净值数据
df_ann_nav = df_fund_nav.loc[fd_share_date:fd_share_date].sort_values(‘update_flag’,ascending=False).head(1)
df_ann_nav = df_ann_nav[[‘ts_code’, ‘accum_nav’,‘unit_nav’]]
df_ann_nav.columns = [‘fund_code’, ‘accum_nav’,‘unit_nav’]
# 计算基金规模,amount,单位:亿元
df_fund_amount = pd.merge(df_fund_share,df_ann_nav,how=‘left’,on=‘fund_code’)
df_fund_amount[‘amount’] = df_fund_amount[‘fd_share’] * df_fund_amount[‘unit_nav’]/10000
df_fund_amount = df_fund_amount[[‘fund_code’,‘amount’,‘fd_share_date’]]
# 合并数据
df_yr_returns = pd.merge(df_fund_amount,df_yr_returns,how=‘left’,on=‘fund_code’)
for yr in year_list:
if yr not in df_yr_returns.columns.tolist():
df_yr_returns[yr]=np.nan
return df_yr_returns
假如你想获取易方达中小盘基金的2018年以来的收益情况信息,可以基于上面的自定义函数 get_returns
,使用如下的代码:
df_return = get_returns(‘110011.OF’,2018)
df_return
获取的信息如下:
同时获取多只基金的信息
上面已经实现了获取单只基金所需要的信息,接下来,咱们需要拼接之前获取的信息。
同时,我们一般会同时关注多只基金,因此同时获取多只基金的信息,也是基本必备的需求。
实现的代码如下:
# 获取多只基金的信息
def get_data_fund(df_fund_info,fund_code_short,code_exception,start_year):
df_filter_info = pd.DataFrame()
for code in fund_code_short:
df_tmp = df_fund_info[df_fund_info[‘fund_code’].str.contains(code)].head(1)
df_filter_info = df_filter_info.append(df_tmp)
df_filter_info = df_filter_info.reset_index(drop=True)
fund_codes = df_filter_info[‘fund_code’].tolist()
# fund_codes
df = pd.DataFrame()
for code in fund_codes:
if code in code_exception:
code_update = code[:-2]+‘OF’
code_short = code[:-3]
df_fund = get_fund(code_update,df_fund_info)
df_fund[‘fund_code’] = code
df_fund = df_fund[[‘fund_code’,‘manager_name’,‘gender’,‘begin_date’]]
df_fund = df_fund.dropna(axis=1) # 删除含 NaN 的列
test_m = df_fund_info[df_fund_info[‘fund_code’].str.contains(code_short)]
df_fund = pd.merge(df_fund,test_m,how=‘left’,on=‘fund_code’)
else:
df_fund = get_fund(code,df_fund_info)
df_return = get_returns(code,start_year)
df_fund_merge = pd.merge(df_fund,df_return,how=‘left’,on=‘fund_code’)
df = df.append(df_fund_merge)
df = df.reset_index(drop=True)
df = df.rename(columns={
‘fund_code’:‘基金代码’,‘manager_name’:‘基金经理’,
‘gender’:‘性别’,‘begin_date’:‘上任日期’,
‘fund_name’:‘基金名称’,‘management’:‘基金公司’,
‘m_fee’:‘管理费’,‘c_fee’:‘托管费’,
‘found_date’:‘成立时间’,‘amount’:‘基金规模(亿元)’,
‘fd_share_date’:‘规模对应日期’
})
# 调整列的排序
cols = df.columns.tolist()
col_1 = cols[:4]
col_2 = cols[4:5]
col_3 = cols[5:]
cols = col_2 + col_1 + col_3
df = df[cols]
return df
上面的自定义函数 get_data_fund
中,存在一些特列,我也进行了调整。
这个特列,主要是有一类基金,叫做LOF基金,场内和场外的数字代码是一样的,比如谢治宇的兴全合润基金,在tushare中,场内的完整代码是163406.SZ,场外的完整代码是163406.OF,对于LOF基金,我们只需要获取一个的信息即可。
同时,由于LOF基金获取信息是基金基础信息和基金经理信息用的代码有些区别,需要分开应用。因此,需要在上面的函数 get_data_fund
中进行区别,并且引入一个 code_exception
参数。
在上面的函数 get_data_fund
中,还对最后显示的列的顺序也进行了调整,该过程的实现的详细内容,可以在下面的链接中来了解:
基于自定义函数 get_data_fund
,设置好函数所需要的参数后,就可以获取多只基金的信息了,具体参数如下:
# 需要获取的基金代码简称列表
fund_code_short = [‘000772’, ‘003095’,‘166005’,‘320007’,
‘163406’,‘260101’,‘161005’,‘162605’,
‘163402’,‘005827’,‘110022’,‘110011’,
‘164908’,‘000800’,‘590008’,
‘360007’,‘118001’,
‘519736’,‘007119’,‘002190’,‘005911’,
‘001938’,‘166002’,‘377240’
]
# [‘200011’,‘690003’,‘200010’,]
# 特列:LOF 基金,基金经理和管理费等费用所用的代码两处不一致,需要调整
# 输入的是 LOF 基金在场内的完整代码
code_exception = [‘163406.SZ’,‘160632.SZ’,‘160222.SZ’,‘159843.SZ’,‘515920.SH’]
# 设置基金收益开始的年份
start_year = 2018
# 设置基金收益截止的年份
end_year = 2021
year_list = list(range(start_year,end_year+1))
df_fund_final = get_data_fund(df_fund_info,fund_code_short,code_exception,start_year)
df_fund_final
得到的结果如下:
Pandas 中,可以通过 Style 对表格样式进行设置,对收益情况进行红涨绿跌的设置。
代码如下:
def color_returns(val):
if val >=0:
color = ‘#EE7621’ # light red
elif val <0:
color = ‘#99ff66’ # light green
else:
color = ‘#FFFAFA’ # ligth gray
return f’background-color: {color}’
format_dict = {‘基金规模(亿元)’: ‘¥{0:.1f}’,
‘管理费’: ‘{0:.1f}’,
‘托管费’: ‘{0:.2f}’,
2017: ‘{0:.1%}’,
2018: ‘{0:.1%}’,
2019: ‘{0:.1%}’,
2020: ‘{0:.1%}’,
2021: ‘{0:.1%}’,
}
df_fund_final = df_fund_final.sort_values(‘基金经理’,ascending=True)
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!