大模型部署的问题,以及企业级大模型的分布式部署方案

大模型的分布式训练和部署,是一个必须要学会的东西

在学习大模型的过程中,很多人都知道大模型的训练与部署,但网上大部分资料介绍的都是单机训练和部署。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

01.大模型训练或部署中的问题‍

‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

在学习大模型训练和部署的过程中,很多人都是按照网络上的教程进行学习;但这些教程大部分只讲了浅显的东西,还有很多问题没有讲明白。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

比较明显的两个问题就是,大模型的规模问题和大模型的适配问题。‍

规模问题

学习和企业级应用是有着巨大差别的,比如说学习大模型的过程中,只需要设计一个几十个参数的大模型即可了解大模型的设计,训练和使用原理。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但在真正的企业级应用中,大模型的参数少则几个亿,多则几十,几百,甚至几万亿的参数量。‍‍‍‍‍

在这种企业级应用中,如果大规模的参数怎么保存,怎么加载;单机硬件资源有限的情况下,怎么进行分布式训练和分布式部署。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

以openAI的chatGPT来说,最新版的gpt4o预估有一千七百多亿个参数,后续的gpt5等更高等级的版本中,参数量可能会更多。‍‍‍‍‍‍‍‍‍‍‍‍‍

而如此规模的大模型,要在一台机器上进行训练和推理几乎是不可能的,哪怕是超级计算机也会很吃力。‍‍‍‍‍‍‍‍‍‍‍

而在之前的学习过程中,基本上都是从pytorch或huggingface或者github上下载一些开源的大模型。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而这些大模型主要是用来学习的,因此参数量规模较小,个人电脑就可以跑的起来。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

个人开发的一个人工智能聊天机器人小程序,感兴趣的可以点击查看:

但在真正的企业级环境中,哪怕可以使用个人电脑或者服务器进行训练和推理;但当企业用户规模达到一定程度之后,如果不进行分布式或集群部署,是绝对不行的。‍‍‍‍‍‍‍‍‍‍‍‍

大模型的适配问题

比如说我们使用ollama或者其它的框架,在本地部署大模型,我们知道在学习的过程中都是直接从网络上下载别人弄好的大模型。‍‍‍‍‍‍‍‍‍‍

假如说,需要你自己设计或者从网上找一个开源的大模型进行训练之后,怎么才能把这个模型适配到ollama框架中,也就是说要把大模型转化为ollama要求的格式。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

比如说,使用llama.cpp项目进行大模型的适配具体应该怎么做? ‍‍‍

02.大模型企业级方案

在前一节中说,大模型个人使用和企业级应用是完全两回事,不论是从参数量还是访问规模上都不可同日而语。‍‍‍‍

企业级大模型需要解决以下几个问题:‍‍‍‍‍‍‍‍

可以单机部署的小模型怎么解决大规模用户访问?‍‍‍‍‍‍‍‍‍‍‍‍

举个例子,企业中有一个几个亿参数的小模型,但企业却有几个亿的用户需要使用它,应该怎么办?‍‍‍‍

这时,一种方案是把小模型进行集群部署,比如说用一百台或者一千台机群分别部署同样的小模型,然后采用负载均衡的方式进行访问。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

其次,如果有一个几千亿参数的大模型,单机无法支持的情况下应该怎么训练和部署?‍‍‍‍‍‍‍‍‍

这种方式只能采用分布式部署或者分布式+集群的方式进行部署;比如把一个模型按照功能逻辑拆分成几个模块,然后在不同的机器上进行训练和推理;最后用并行计算的方式对外提供服务。‍‍‍‍‍‍‍‍‍‍‍‍‍

关于大模型分布式训练和推理的三大并行方式:‍‍

  1. 数据并行(Data Parallelism)
  • 将模型复制到多台机器上,并在每台机器上使用不同的训练数据进行训练。

  • 每台机器计算出梯度后,将这些梯度聚合到一起并更新模型参数。

  • 常用的工具包括TensorFlow的分布式策略、PyTorch的分布式数据并行等。

  1. 模型并行(Model Parallelism)
  • 将模型的不同部分分布到不同的机器上。

  • 每台机器只计算模型的一部分前向传播和后向传播。

  • 这种方法适用于模型特别大,单台机器的内存无法容纳整个模型的情况。

  1. 流水线并行(Pipeline Parallelism)
  • 将模型分成多个阶段,每个阶段分布在不同的机器上。

  • 输入数据依次通过这些阶段,类似于生产流水线。

  • 这种方法结合了数据并行和模型并行的优点,适用于大规模训练。

  1. 混合并行(Hybrid Parallelism)
  • 将上述方法进行组合,以适应特定的需求。

  • 例如,数据并行和模型并行的组合,可以充分利用计算资源和内存资源。

最后一种并行方式属于把前面三种方式的结合,算不上是一种新的方式。‍‍‍

常见的一些技术框架:‍‍‍‍

实现分布式部署的一些工具和框架

  • TensorFlow:提供了多种分布式策略,如 tf.distribute.MirroredStrategy(数据并行)和 tf.distribute.TPUStrategy(TPU上的数据并行)。

  • PyTorch:提供了 torch.distributed 包,支持数据并行和模型并行。

  • Horovod:一个开源库,最初由Uber开发,支持TensorFlow、Keras、PyTorch等的分布式训练,简化了多GPU和多机器训练的实现。

  • DeepSpeed:微软开源的一个深度学习优化库,支持大规模模型的分布式训练和推理。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT猫仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值