三角函数积分(二)

文章介绍了在解决三角函数积分问题时,除了万能公式法外,还可以运用“缩分母”技巧,如当分母为1+cosx或1+sinx时,可以通过变形简化问题。此外,提到了二倍角公式和化归方法(如sinx=cos(π/2-x))在解决特定类型问题时的作用。同时,建议通过辅助角公式降低题目难度,并举例说明了如何运用这些技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


三角函数积分(一)万能公式法在上一节中,用万能公式法解题三角函数,但是虽然方法比较万能,但是在一些题目中解题会比较繁琐,所以学习更多的三角函数积分的解法是非常有必要的。

这一节,主要练习“缩分母”技巧。

当分母为 1+cosx或者1+sinx 时,使用缩分母技巧,将两项变为一项,会降低题目的难度。因为我们宁愿让分子有很多项,也不想让分母有很多项,因为分母有很多项时,我们可以将其拆开,拆成若干个不定积分之和。

技巧一:使用二倍角公式。

56be485e6ace471084b5ee8695ef5bd5.jpg

练习1:

98e1df11138542be8cddd7cd0df63fe2.jpg

 当然这道题目,它之后分母含有cos函数我,切且次数为一次,所以使用万能公式法也是很不错的选择。

5589b867db6a4ae08d126bef283a981d.jpg

技巧二:分子分母同乘共轭表达式

分母为 1+cosx 可以分子分母同乘 1-cosx

分母为1+sinx   可以分子分母同乘1-sinx

练习2:

036d7ae0e7d84ec9a6e691ea00e5ccea.jpg

从上面,我们可知,我们深记一些三角函数的积分是十分有必要的。

ecf38e701fa347fb92ef3cbd3742968a.jpg

 练习3:

cbc0521abf9e44fabd64a5ae691a5ea6.jpg

 补充:

当我们遇到求tan²x时,根据tan²+1=sec²x,将其转化为求sec²x-1的积分。

f62141392af14dd297f08e062af49833.jpg

方法二:化归

sinx=cos(π/2-x)由此可以将sin函数化为cos函数。

f827cd2a9a9849d6ac11f097be237621.jpg

思考🤔:这个题目分子都含有一次项sinx,使用万能公式法怎么样?

不妨来尝试一下。

57f156ca0eef455da5713e848fac03e4.jpg

到最后我们转化为有理函数求积分,但是计算这个ABCD不见得很容易。

回想之前上一节用万能公式法,都是分母有三角函数且次数为一次,能够极大的利用万能公式法的优势,将其解出来。

所以这道题我们可以加项减项,降低难度。

1054cf2e859446c1b5553e06a822b5f5.jpg

技巧三:辅助角公式-合二为一

83715d5488f84ffd98d5bb48cd0cc3ad.jpg

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

釉色清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值