【数据结构】二叉树经典例题---<你真的掌握二叉树了吗?>(第二弹)

本次选题都为选择题。涉及到二叉树总结点和叶子结点的计算、二叉树的基本性质、根据二叉树的前序/后序和中序遍历画出二叉树、哈夫曼树等等…希望对你有帮助哦~😝

1.若一颗二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数为()
A.9 B.11 C.15 D.不确定

分析:本题为求解二叉树的度为0的结点个数,也就是求叶子结点。 在做此类题时,我们一般设两个未知数,即总结点n,和叶结点   n 0 {\ n_0}  n0。 计算方法即,从两个角度看二叉树,从而列出等式。
二叉树的总结点树等于各不同性质结点之和即 n = n 0 + n 1 + n 2 {n=n_0+n_1+n_2} n=n0+n1+n2,从而, n = n 0 + 5 + 10 {n=n_0+5+10} n=n0+5+10。 二叉树的终结点数等于
结点的度*该性质结点的个数+1,(这个加的1即为这个树的根节点)即 n = 10 ∗ 2 + 5 ∗ 1 + 1 = 26 n=10*2+5*1+1=26 n=102+51+1=26,从而可以解得 n 0 = 11 n_0=11 n0=11.
故此题选B。

2.一颗完全二叉树上有1001个结点,其中叶子结点的个数为()
A.250 B.500 C.502 D.以上均不对

分析:本题涉及到了满二叉树的总结点数和层结点数的基本知识。

对于一颗满二叉树而言,若有k层,那么这颗满二叉树总结点数等于 2 k − 1 {2^k-1} 2k1,
它在第k层的结点总数为 ( 2 k − 1 + 1 ) / 2 = 2 k − 1 (2^k-1+1)/2=2^{k-1} 2k1+1/2=2k1


那么具有k层的完全二叉树呢?它可以看作是k-1层满二叉树+最后一层叶结点。
对于本题,完全二叉树有1001个结点,我们推断:具有10层的满二叉树共有1023个结点,具有9层的满二叉树具有511个结点,所有该完全二叉树共有10层。
前9层共有结点数511,那么最后一层结点数为1001-511=490。但是这不是总的叶结点数。
我们还需要计算第9层的叶结点数。第九层的总结点数:(511+1)/2=256,第九层的叶结点数:256-490/2=11,故总的叶结点数为:490+11=501.
故本题选D。

3.具有10个叶子结点的完全二叉树中有()个度为2的结点。
A.8 B.9 C.10.D11

分析:根据二叉树的性质,对任何一棵二叉树T,如果其终端结点数为 n 0 n_0 n0,度为2的结点数为 n 2 n_2 n2,则 n 0 = n 2 + 1 n_0=n_2+1 n0n2+1
对于这个性质呢,我是根据二叉树的两种结点的计算方法联立,消去 n 1 , n n_1,n n1n,从而得到 n 0 n_0 n0 n 2 n_2 n2的关系式。


故本题选B。

4.设给定权值结点总数有n个,那么哈夫曼树的结点总数为()。
A.不确定 B.2n C.2n+1 D.2n-1

分析:
这个题需要理解哈夫曼树的构造,哈夫曼树即是将森林中的树不断地合二为一,最终形成最优二叉树。我是根据基本的规律得出结论,给定权值结点的总数为2,那么哈夫曼树结点为3;给定权值结点的总数为3,那么哈夫曼树的结点为5…那么给定权值结点的总数为n,则哈夫曼树的结点总数为2n-1。

故本题选D。

5.用一组权值{3,6,8,10,11}构造一颗哈夫曼树,它的带权路径长度为()。
A.92 B.35 C.38 D.85

分析:本题的考察内容为哈夫曼树的构造以及基本的概念。
哈夫曼树构造的算法思想:
已知一组叶子结点的权值为 w 1 , w 2 , w 3 , . . . , w n w_1,w_2,w_3,...,w_n w1,w2,w3,...,wn则构造哈夫曼树的构成如下
①首先把n个叶子结点看作n棵树(仅有一个结点的二叉树),n棵树构成一颗森林。
②在森林中把权值最小和次小的两棵树合并成一棵树,该树结点的权值是两棵树根结点的权值之和,这时森林中就会减少一棵树。
③重复第②步直到森林中只有一颗二叉树为止。

对于本题,设权值{3,6,8,10,11}对应的结点分别是a、b、c、d、e。
首先,这5棵树构成森林:


其次,选权值最小的a树和b合并成一棵树:

再次,选权值最小的也就是新构成的这个权值为9的树和c树构成合并成一颗新树:

然后,我们选择d树和e树合并成一棵树:

最后,我们将两棵树合并成一棵树:

我们现在已经构造好这一棵哈夫曼树,题目让求它的带权路径长度:
明确带权路径:

结点的带权路径长度从根结点到该结点之间的路径长度与该结点的权的乘积。
树的带权路径长度:树中所有叶子结点的带权路径长度之和。记作:
W P L = ∑ k = 1 n w k l k WPL=\sum _{k=1}^n w_kl_k WPL=k=1nwklk
其中, w k w_k wk是权值, l k l_k lk是结点到根的路径长度,Weighted Path Length。

即: 3×3+3×6+2×8+2×10+2×11=85。
故本题选D。

6.下列有关二叉树的说法中,正确的是()
A.二叉树的度为2
B.一颗二叉树的度可以小于2
C.二叉树中至少有一个结点的度为2
D.二叉树中任何一个结点的度都为2

分析:二叉树中的任何结点的度都小于等于2,可以为0,1,2。
故此题选B

7.二叉树的第i层上最多含有结点数为()
A. 2 i 2^i 2i B. 2 i − 1 2^{i-1} 2i1-1 C. 2 i − 1 2^{i-1} 2i1 D. 2 i 2^i 2i-1

分析:二叉树的基本性质,第i层上最多含有 2 i − 1 2^{i-1} 2i1个结点。
故本题选C。

8.一颗具有n个结点的完全二叉树的深度为()
A. [ log ⁡ 2 n ] + 1 [\log_2n]+1 [log2n]+1 B. log ⁡ 2 n + 1 \log_2n+1 log2n+1 C.[ log ⁡ 2 n \log_2n log2n] D. log ⁡ 2 n − 1 \log_2n-1 log2n1

分析:二叉树的基本性质,一颗具有n个结点的完全二叉树的深度为 [ log ⁡ 2 n ] + 1 [\log_2n]+1 [log2n]+1
故本题选A。

9.在一棵深度为k的满二叉树中,结点总数为()
A. 2 k − 1 2^{k-1} 2k1 B. 2 k 2^k 2k C. 2 k − 1 2^k-1 2k1 D.[ log ⁡ 2 k \log2^k log2k]+1

分析:二叉树的基本性质,在一棵深度为k的满二叉树中,结点总数为 2 k − 1 2^k-1 2k1
故此题选C。

10.一颗二叉树的先序遍历序列为ABCDEFG,它的中序遍历序列可能是() A.CABDEFG B.ABCDEFG C.DACEFBG D.ADCEFG

分析:这个题,可以从很多方面进行排除。
首先,我们可以很确定的是这棵树的根节点为A。
我比较喜欢采用中序遍历的特点,将这棵树可能的形状进行想象,从而排除。
中序遍历的特点就是,将一颗树压扁之后,即压制同一水平线,就是中序遍历的结果。


例如这颗二叉树,我将其压扁,之后的排序就是,dgbeafhc。
根据中序遍历的特点,我们逐个排除选项。
对于A选项,CABDEFG,则这颗二叉树部分一定是
C为A的左子树。右边我们可以不先进行判断,如果是这样的话,那么它的前序遍历一定是AC…所以排除A选项。

对于B选项,ABCDEFG,这棵树的部分一定是:

即这棵树只有右子树,没有左子树。那么对应它的先序遍历AB…,首先基本的看不出错误。
对于C选项DACEFBG,它的部分一定是,

那么它对应的前序遍历一定是 DA…,所以排除C选项。
对于D选项,ADCEFG那么它对应的二叉树的部分一定是:

那么它对应的前序遍历一定是 AD…不符,所以排除D选项。
故此题选B。

11.已知某二叉树的后序遍历序列为DABEC,中序遍历序列为DEBAC,它的先序遍历序列是()。
A.ACBED B.DECAB C.DEABC D.CEDBA

分析:此类题目是经典根据中序遍历和先序/后序遍历得出后序/先序遍历的题。此类题需要我们根据已知的信息发出这颗二叉树,从而得出它的先序/后序遍历。
做这类题都是根据先序、中序、后序遍历的特点分析:先序顺序即:根->左子树->右子树,中序遍历为:左子树->根->右子树,后序遍历为:左子树->右子树->根。

对于本题,根据后序遍历,得出根节点C。


根据我们画出来的二叉树,从而得出它的先序遍历是 CEDBA。
故本题选择D。

12.二叉树的先序遍历序列为EFHIGJK,中序遍历为HFIEJKG,该二叉树根的右子树的根是()
A.E B.F C.G D.H

分析:同上题一样,我们先画出此二叉树,从而得出结论。

我们画出此二叉树。从而可以知道该二叉树的右子树的根为G。
故此题选C。

13.某二叉树的先序序列和后序序列正好相反,则该二叉树一定是()的二叉树。
A.空或只有一个结点 B.任一结点无左子树 C.高度等于其结点数 D.任一结点无右子树

分析:先序序列:根->左子树->右子树
反过来:右子树->左子树->根
后序序列:左子树->右子树->根
因此树只有根结点,或者根结点只有左子树或右子树,依此类推,其子树有同样的性质,任意结点只能有一个孩子,才能满足先序序列和后序序列正好相反。树形应该为一个长链。

所以选B。

14.在有n个结点的二叉树中的二叉链表表示中,空指针数()。
A.不定 B.n+1 C.n Dn-1

分析:二叉链表即如下图所示。
在n个结点中,有叶子结点,其两个指针域都是空指针。有有一个孩子的结点,其有一个指针域不为空,有一个指针域为空。有有两个孩子的结点,其两个指针域都不为空。那么空指针数等于叶子结点数×2+有一个孩子的结点数。
设所求空指针数为m,则 m = 2 n 0 + n 1 m=2n_0+n_1 m2n0n1
我仍然根据两个基本的方程进行联立,从而得到:

故本题选B。

15.若某二叉树有20个叶子结点,有20个结点仅仅有一个孩子,则该二叉树的总结点数是()。
A.40 B.55 C.59 D.61

分析:本题是求二叉树的总结点树。此类题目,我们仍然从两个角度去列方程。> 首先,先设总结点树为n,设有两个孩子的结点树为 n 2 n_2 n2:> 则 n = n 0 + n 1 + n 2 = 20 + 20 + n 2 n=n_0+n_1+n_2=20+20+n_2 n=n0+n1+n2=20+20+n2> n= 20 ∗ 1 + n 2 ∗ 2 + 1 20*1+n_2*2+1 201+n22+1> 联立解得n=59。
故本题选C。

16.假设一颗二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结点数为()个。
A.40 B.55 C.59 D.61

分析:由题可以转化,有两个孩子的结点数为15,有一个孩子的结点数为30。
我们同上个题目一样,列方程解出。
设总结点数为n,叶子结点数为 n 0 n_0 n0.
则有 n = n 0 + n 1 + n 2 = n 0 + 30 + 15 n=n_0+n_1+n_2=n_0+30+15 n=n0+n1+n2=n0+30+15
n = 15 ∗ 2 + 30 ∗ 1 + 1 = 61 n=15*2+30*1+1=61 n=152+301+1=61

从而解得, n 0 n_0 n0=16。
故本题选B。

17.按照二叉树的定义,具有三个结点的二叉树有()种。
A.3 B.4 C.5 D.6

分析:二叉树是有序树,因而具有三个节点的二叉树有以下五种:

故本题选C。

18.根据先序序列ABDC和中序序列DBAC确定对应的二叉树,该二叉树()。
A.是完全二叉树 B.不是完全二叉树 C.是满二叉树 D. 不是满二叉树

分析:我们根据先序遍历和中序遍历画出此二叉树即可。


由树的形态可知,该树为完全二叉树。
故本题选A。

19.某二叉树的中序遍历为ABCDEFG,后序遍历为BDCAFGE,则其左子树中结点数目为()
A.3 B.2 C.4 D.5

分析:题目只要求 求左子树中的结点数目即可。所以我们可以直接进行分析,不需要具体画出此二叉树。 根据后序遍历,我们可以得之,这棵树的根节点为E,根据根节点E,从中序遍历结果中即可看出,左子树的所有结点为ABCD,右子树的所有结点为FG。
故本题选择C。

20.将一颗有100个结点的完全二叉树从根这一层开始,每一层上从左到右一次对结点进行编号,根节点的编号为1,则编号为49的结点的左孩子的编号为()
A.98 B.99 C.50 D.48

分析: 2 5 < 49 < 2 6 2^5<49<2^6 25<49<26,故编号为49的结点在第5层上面。
并且可以得之,编号为49的结点为第5层的第49-32+1=18个结点。
第6层的结点从64开始,63+17*2=97,则编号为49的结点的左孩子的编号为98。

故本题选A。

21.树最适合用来表示()
A.有序数据元素
B.无序数据元素
C.元素之间具有分支层次关系的数据
D.元素之间无关联的数据

分析:树型数据结构是一种重要的非线性数据结构,是以分支关系定义的层次结构。故树适合用于用来表示元素之间具有分支层次关系的数据。
故本题选C。

22.下面说法中正确的是()。
A.度为2的树是二叉树。
B.度为2的有序树是二叉树。
C.子树有严格左右之分的树是二叉树。
D.子树有严格之分,且度不超过2的树是二叉树。

分析:二叉树的度可以为1或0.比如:
一个只有根结点的树的度为0,左边这个二叉树的度为1。
故子树有严格之分,且度不超过2的树为二叉树。
本题选D。

  • 16
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
(1)非递归定义 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除结点外n0 , 其余的每一个结点都有且仅有一个直接前驱结点;有零个或多个直接后继结点。 (2)递归定义 一颗大树分成几个大的分枝,每个大分枝再分成几个小分枝,小分枝再分成更小的分枝,… ,每个分枝也都是一颗树,由此我们可以给出树的递归定义。 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除根结点之外的其他结点分为m(m≥0)个互不相交的集合T0,T1,…,Tm-1,其中每个集合Ti(0≤im)本身又是一棵树,称为根的子树(subtree)。 2、掌握树的各种术语: (1) 父母、孩子与兄弟结点 (2) 度 (3) 结点层次、树的高度 (4) 边、路径 (5) 无序树、有序树 (6) 森林 3、二叉树的定义 二叉树(binary tree)是由n(n≥0)个结点组成的有限集合,此集合或者为空,或者由一个根结点加上两棵分别称为左、右子树的,互不相交的二叉树组成。 二叉树可以为空集,因此根可以有空的左子树或者右子树,亦或者左、右子树皆为空。 4、掌握二叉树的五个性质 5、二叉树的二叉链表存储。
平衡二叉树是一种特殊的二叉树,它的左右子树的高度差不超过1。AVL树是一种自平衡的二叉搜索树,它的高度始终保持在O(log n)。 下面是C语言实现平衡二叉树(AVL树)的代码: ``` #include <stdio.h> #include <stdlib.h> /* 定义平衡二叉树节点结构体 */ struct AVLNode { int data; // 存储的数据 int height; // 节点高度 struct AVLNode *leftChild; // 左子树 struct AVLNode *rightChild; // 右子树 }; /* 获取节点高度 */ int getHeight(struct AVLNode *node) { if (node == NULL) { return -1; } else { return node->height; } } /* 获取节点平衡因子 */ int getBalanceFactor(struct AVLNode *node) { if (node == NULL) { return 0; } else { return getHeight(node->leftChild) - getHeight(node->rightChild); } } /* 更新节点高度 */ void updateHeight(struct AVLNode *node) { node->height = 1 + (getHeight(node->leftChild) > getHeight(node->rightChild) ? getHeight(node->leftChild) : getHeight(node->rightChild)); } /* 右旋操作 */ struct AVLNode *rotateRight(struct AVLNode *node) { struct AVLNode *newRoot = node->leftChild; node->leftChild = newRoot->rightChild; newRoot->rightChild = node; updateHeight(node); updateHeight(newRoot); return newRoot; } /* 左旋操作 */ struct AVLNode *rotateLeft(struct AVLNode *node) { struct AVLNode *newRoot = node->rightChild; node->rightChild = newRoot->leftChild; newRoot->leftChild = node; updateHeight(node); updateHeight(newRoot); return newRoot; } /* 插入操作 */ struct AVLNode *insert(struct AVLNode *root, int data) { if (root == NULL) { root = (struct AVLNode *) malloc(sizeof(struct AVLNode)); root->data = data; root->height = 0; root->leftChild = NULL; root->rightChild = NULL; } else if (data < root->data) { root->leftChild = insert(root->leftChild, data); if (getHeight(root->leftChild) - getHeight(root->rightChild) == 2) { if (data < root->leftChild->data) { root = rotateRight(root); } else { root->leftChild = rotateLeft(root->leftChild); root = rotateRight(root); } } } else if (data > root->data) { root->rightChild = insert(root->rightChild, data); if (getHeight(root->rightChild) - getHeight(root->leftChild) == 2) { if (data > root->rightChild->data) { root = rotateLeft(root); } else { root->rightChild = rotateRight(root->rightChild); root = rotateLeft(root); } } } updateHeight(root); return root; } /* 中序遍历 */ void inOrderTraversal(struct AVLNode *root) { if (root != NULL) { inOrderTraversal(root->leftChild); printf("%d ", root->data); inOrderTraversal(root->rightChild); } } int main() { struct AVLNode *root = NULL; int data[] = {5, 2, 8, 1, 3, 6, 9}; int len = sizeof(data) / sizeof(data[0]); int i; for (i = 0; i < len; i++) { root = insert(root, data[i]); } inOrderTraversal(root); return 0; } ``` 以上代码实现了平衡二叉树的插入和中序遍历操作。在插入操作中,根据插入节点的值和当前节点的值的大小关系,不断递归向左或向右子树进行插入操作,并在递归返回时更新节点高度和进行平衡操作。在平衡操作中,根据节点的平衡因子进行旋转操作,使树重新平衡。在中序遍历操作中,按照左子树、根节点、右子树的顺序遍历树中的节点,输出节点的值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

釉色清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值