常用Latex总结(自用)
不定时添加更新
通用
- 上标
n
2
n^2
n2
^
- 下标
A
1
A_1
A1
_
- 上划线
P
‾
\overline{P}
P
\overline
- 下划线
A
‾
\underline{A}
A
\underline
- 波浪线
∼
\sim
∼
\sim
- 约等于号
≈
\approx
≈
\approx
- 空格
A
B
−
>
A
B
A B -> A\quad B
AB−>AB
\quad
-
≥
\geq
≥
\geq
-
≤
\leq
≤
\leq
-
>
>
>
>
-
<
<
<
<
-
=
=
=
=
希腊字母
-
α
\alpha
α
\alpha
-
β
\beta
β
\beta
-
γ
\gamma
γ
\gamma
Γ \Gamma Γ\Gamma
-
δ
\delta
δ
\delta
Δ \Delta Δ\Delta
-
ϵ
\epsilon
ϵ
\epsilon
-
ε
\varepsilon
ε
\varepsilon
-
ζ
\zeta
ζ
\zeta
-
η
\eta
η
\eta
-
σ
\sigma
σ
\sigma
-
ϑ
\vartheta
ϑ
\vartheta
-
μ
\mu
μ
\mu
-
ν
\nu
ν
\nu
-
φ
\varphi
φ
\varphi
-
π
\pi
π
\p
Π \Pi Π\Pi
-
ϕ
\phi
ϕ
\phi
Φ \Phi Φ\Phi
-
ψ
\psi
ψ
\psi
Ψ \Psi Ψ\Psi
-
σ
\sigma
σ
\sigma
Σ \Sigma Σ\Sigma
-
θ
\theta
θ
\theta
Θ \Theta Θ\Theta
-
υ
\upsilon
υ
\upsilon
Υ \Upsilon Υ\Upsilon
-
ω
\omega
ω
\omega
Ω \Omega Ω\Omega
-
λ
\lambda
λ
\lambda
Λ \Lambda Λ\Lambda
其它
-
否定
¬
否定 \neg
否定¬
\neg
-
合取
∧
合取\land
合取∧
\land
-
析取
∨
析取 \lor
析取∨
\lor
-
异或
∨
‾
异或\overline{\lor}
异或∨
\overline{\lor}
-
蕴涵
→
蕴涵 \rightarrow
蕴涵→
\rightarrow
-
等价
↔
等价\leftrightarrow
等价↔
\leftrightarrow
-
⇔
\Leftrightarrow
⇔
\Leftrightarrow
-
∪
\cup
∪
\cup
⋓ \Cup ⋓\Cup
⋃ \bigcup ⋃\bigcup
-
∩
\cap
∩
\cap
⋒ \Cap ⋒\Cap
⋂ \bigcap ⋂bigcap
-
⊂
\subset
⊂
\subset
-
∫
\int
∫
\int
-
∑
\sum
∑
\sum
-
∏
\prod
∏
\prod
-
∀
\forall
∀
\forall
-
∃
\exists
∃
\exists
-
∈
\in
∈
\in
-
∞
\infty
∞
\infty
-
⊕
\oplus
⊕
\oplus
-
⊙
\odot
⊙
\odot
-
⊗
\otimes
⊗
\otimes
-
1
2
\frac{1}{2}
21
\frac{1}{2}
P n m = n ( n − 1 ) ( n − 2 ) . . . ( n − m + 1 ) = n ! ( n − m ) ! P^m_n = n(n-1)(n-2)...(n-m+1)=\frac{n!}{(n-m)!} Pnm=n(n−1)(n−2)...(n−m+1)=(n−m)!n!
\limits
:
∏ i = 0 2 n − 1 M i ⇔ M 0 ∧ M 1 ∧ . . . ∧ M 2 n − 1 ⇔ F \prod\limits^{2^{n}-1}_{i=0}M_i \Leftrightarrow M_0 \land M_1\land ... \land M_{2^{n}-1} \Leftrightarrow F i=0∏2n−1Mi⇔M0∧M1∧...∧M2n−1⇔F
$$\prod\limits^{2^{n}-1}_{i=0}M_i \Leftrightarrow M_0 \land M_1\land ... \land M_{2^{n}-1} \Leftrightarrow F$$
-
P ( A k ∣ B ) = P ( A k ) P ( B ∣ A k ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) = A k B P ( B ) P(A_k|B)=\frac{P(A_k)P(B|A_k)}{\sum\limits^n_{i=1}P(A_i)P(B|A_i)} = \frac{A_k B}{P(B)} P(Ak∣B)=i=1∑nP(Ai)P(B∣Ai)P(Ak)P(B∣Ak)=P(B)AkB
$P(A_k|B)=\frac{P(A_k)P(B|A_k)}{\sum\limits^n_{i=1}P(A_i)P(B|A_i)} = \frac{A_k B}{P(B)}$
-
∫ − ∞ + ∞ f ( x ) = 1 \int^{+\infty}_{-\infty}f(x)=1 ∫−∞+∞f(x)=1
$\int^{+\infty}_{-\infty}f(x)=1$