Latex常用符号

常用Latex总结(自用)
不定时添加更新

通用

  • 上标 n 2 n^2 n2 ^
  • 下标 A 1 A_1 A1 _
  • 上划线 P ‾ \overline{P} P \overline
  • 下划线 A ‾ \underline{A} A \underline
  • 波浪线 ∼ \sim \sim
  • 约等于号 ≈ \approx \approx
  • 空格 A B − > A B A B -> A\quad B AB>AB \quad
  • ≥ \geq \geq
  • ≤ \leq \leq
  • > > > >
  • < < < <
  • = = = =

希腊字母

  • α \alpha α \alpha
  • β \beta β \beta
  • γ \gamma γ \gamma Γ \Gamma Γ \Gamma
  • δ \delta δ \delta Δ \Delta Δ\Delta
  • ϵ \epsilon ϵ \epsilon
  • ε \varepsilon ε \varepsilon
  • ζ \zeta ζ \zeta
  • η \eta η \eta
  • σ \sigma σ\sigma
  • ϑ \vartheta ϑ \vartheta
  • μ \mu μ \mu
  • ν \nu ν \nu
  • φ \varphi φ \varphi
  • π \pi π \p Π \Pi Π\Pi
  • ϕ \phi ϕ \phi Φ \Phi Φ \Phi
  • ψ \psi ψ \psi Ψ \Psi Ψ \Psi
  • σ \sigma σ \sigma Σ \Sigma Σ \Sigma
  • θ \theta θ \theta Θ \Theta Θ \Theta
  • υ \upsilon υ \upsilon Υ \Upsilon Υ \Upsilon
  • ω \omega ω \omega Ω \Omega Ω \Omega
  • λ \lambda λ \lambda Λ \Lambda Λ \Lambda

其它

  • 否定 ¬ 否定 \neg 否定¬ \neg
  • 合取 ∧ 合取\land 合取 \land
  • 析取 ∨ 析取 \lor 析取 \lor
  • 异或 ∨ ‾ 异或\overline{\lor} 异或 \overline{\lor}
  • 蕴涵 → 蕴涵 \rightarrow 蕴涵 \rightarrow
  • 等价 ↔ 等价\leftrightarrow 等价\leftrightarrow
  • ⇔ \Leftrightarrow \Leftrightarrow
  • ∪ \cup \cup ⋓ \Cup \Cup ⋃ \bigcup \bigcup
  • ∩ \cap \cap ⋒ \Cap \Cap ⋂ \bigcap bigcap
  • ⊂ \subset \subset
  • ∫ \int \int
  • ∑ \sum \sum
  • ∏ \prod \prod
  • ∀ \forall \forall
  • ∃ \exists \exists
  • ∈ \in \in
  • ∞ \infty \infty
  • ⊕ \oplus \oplus
  • ⊙ \odot \odot
  • ⊗ \otimes \otimes
  • 1 2 \frac{1}{2} 21 \frac{1}{2}

P n m = n ( n − 1 ) ( n − 2 ) . . . ( n − m + 1 ) = n ! ( n − m ) ! P^m_n = n(n-1)(n-2)...(n-m+1)=\frac{n!}{(n-m)!} Pnm=n(n1)(n2)...(nm+1)=(nm)!n!

  • \limits
    ∏ i = 0 2 n − 1 M i ⇔ M 0 ∧ M 1 ∧ . . . ∧ M 2 n − 1 ⇔ F \prod\limits^{2^{n}-1}_{i=0}M_i \Leftrightarrow M_0 \land M_1\land ... \land M_{2^{n}-1} \Leftrightarrow F i=02n1MiM0M1...M2n1F

$$\prod\limits^{2^{n}-1}_{i=0}M_i \Leftrightarrow M_0 \land M_1\land ... \land M_{2^{n}-1} \Leftrightarrow F$$

  • P ( A k ∣ B ) = P ( A k ) P ( B ∣ A k ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) = A k B P ( B ) P(A_k|B)=\frac{P(A_k)P(B|A_k)}{\sum\limits^n_{i=1}P(A_i)P(B|A_i)} = \frac{A_k B}{P(B)} P(AkB)=i=1nP(Ai)P(BAi)P(Ak)P(BAk)=P(B)AkB
    $P(A_k|B)=\frac{P(A_k)P(B|A_k)}{\sum\limits^n_{i=1}P(A_i)P(B|A_i)} = \frac{A_k B}{P(B)}$

  • ∫ − ∞ + ∞ f ( x ) = 1 \int^{+\infty}_{-\infty}f(x)=1 +f(x)=1
    $\int^{+\infty}_{-\infty}f(x)=1$

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值