LaTeX | 常用符号与表达速查

注:本文为 “ LaTeX 符号” 相关文章合辑。

未全部整理校对去重,请按需索引使用。

如有内容异常,请看原文。

文中显示为 KaTeX…… 的,要么是待校的,要么是 CSDN 目前不支持的,要么是需要特定宏包支持的。


LaTeX 常用符号与表达

一、公式插入方式

语法描述
$数学公式$行中公式单 $ 包裹
$$数学公式$$独立公式双 $ 包裹,此处示例受表格所限不独立居中

二、基础符号

(一)加帽子符号

语法效果描述
\^{Z} Z ˆ \text{\^{Z}} Zˆ在正文中为字母 Z 添加帽子符号
\hat{Z} Z ^ \hat{Z} Z^在公式中为字母 Z 添加帽子符号

(二)加横线和波浪线

语法效果描述
\overline{X} X ‾ \overline{X} X在字母或表达式上方添加横线
\widetilde{X} X ~ \widetilde{X} X 在字母或表达式上方添加波浪线
\dot{X} X ˙ \dot{X} X˙在字母上方添加一个点,表示导数等
\ddot{X} X ¨ \ddot{X} X¨在字母上方添加两个点,表示二阶导数等

三、特殊符号

(一)声调

语法效果描述
\bar{x} x ˉ \bar{x} xˉ在字母上方添加横线
\acute{\eta} η ˊ \acute{\eta} ηˊ在字母上方添加锐音符号
\check{\alpha} α ˇ \check{\alpha} αˇ在字母上方添加检查符号
\grave{\eta} η ˋ \grave{\eta} ηˋ在字母上方添加重音符号
\breve{a} a ˘ \breve{a} a˘在字母上方添加短音符号
\ddot{y} y ¨ \ddot{y} y¨在字母上方添加两个点
\dot{x} x ˙ \dot{x} x˙在字母上方添加一个点
\hat{\alpha} α ^ \hat{\alpha} α^在字母上方添加帽子
\tilde{\iota} ι ~ \tilde{\iota} ι~在字母上方添加波浪线

(二)函数

语法效果描述
\sin\theta sin ⁡ θ \sin\theta sinθ正弦函数
\cos\theta cos ⁡ θ \cos\theta cosθ余弦函数
\tan\theta tan ⁡ θ \tan\theta tanθ正切函数
\arcsin\frac{L}{r} arcsin ⁡ L r \arcsin\frac{L}{r} arcsinrL反正弦函数
\arccos\frac{T}{r} arccos ⁡ T r \arccos\frac{T}{r} arccosrT反余弦函数
\arctan\frac{L}{T} arctan ⁡ L T \arctan\frac{L}{T} arctanTL反正切函数
\sinh g sinh ⁡ g \sinh g sinhg双曲正弦函数
\cosh h cosh ⁡ h \cosh h coshh双曲余弦函数
\tanh i tanh ⁡ i \tanh i tanhi双曲正切函数
\operatorname{sh}j sh ⁡ j \operatorname{sh}j shj双曲正弦函数(另一种表示)
\operatorname{argsh}k argsh ⁡ k \operatorname{argsh}k argshk双曲正弦的反函数
\operatorname{ch}h ch ⁡ h \operatorname{ch}h chh双曲余弦函数(另一种表示)
\operatorname{argch}l argch ⁡ l \operatorname{argch}l argchl双曲余弦的反函数
\operatorname{th}i th ⁡ i \operatorname{th}i thi双曲正切函数(另一种表示)
\operatorname{argth}m argth ⁡ m \operatorname{argth}m argthm双曲正切的反函数

(三)同余

语法效果描述
\pmod{m} ( m o d m ) \pmod{m} (modm)表示模 m 的同余关系
a \bmod b a   m o d   b a \bmod b amodb表示 a 除以 b 的余数

(四)微分

语法效果描述
\nabla ∇ \nabla 梯度算子
\partial x ∂ x \partial x x偏导数符号
\mathrm{d}x d x \mathrm{d}x dx微分符号
\dot x x ˙ \dot x x˙一阶导数符号
\ddot y y ¨ \ddot y y¨二阶导数符号

(五)集合

语法效果描述
\forall ∀ \forall 表示“对所有”
\exists ∃ \exists 表示“存在”
\empty ∅ \empty 空集
\emptyset ∅ \emptyset 空集
\varnothing ∅ \varnothing 空集
\in ∈ \in 属于
\ni ∋ \ni 包含
\not\in ∉ \not\in 不属于
\notin ∉ \notin /不属于
\subset ⊂ \subset 真子集
\subseteq ⊆ \subseteq 子集
\supset ⊃ \supset 真超集
\supseteq ⊇ \supseteq 超集
\cap ∩ \cap 交集
\bigcap ⋂ \bigcap 多个集合的交集
\cup ∪ \cup 并集
\bigcup ⋃ \bigcup 多个集合的并集
\biguplus ⨄ \biguplus 多个集合的不相交并集
\sqsubset ⊏ \sqsubset 平方真子集
\sqsubseteq ⊑ \sqsubseteq 平方子集
\sqsupset ⊐ \sqsupset 平方真超集
\sqsupseteq ⊒ \sqsupseteq 平方超集
\sqcap ⊓ \sqcap 平方交集
\sqcup ⊔ \sqcup 平方并集
\bigsqcup ⨆ \bigsqcup 多个集合的平方并集

(六)逻辑

语法效果描述
\land ∧ \land 逻辑与
\wedge ∧ \wedge 逻辑与(另一种表示)
\bigwedge ⋀ \bigwedge 多个逻辑与
\bar{q} \to p q ˉ → p \bar{q} \to p qˉp逻辑非后接逻辑蕴含
\lor ∨ \lor 逻辑或
\vee ∨ \vee 逻辑或(另一种表示)
\bigvee ⋁ \bigvee 多个逻辑或
\lnot ¬ \lnot ¬逻辑非
\neg q ¬ q \neg q ¬q逻辑非(另一种表示)
\setminus ∖ \setminus 集合差
\smallsetminus ∖ \smallsetminus 集合差(另一种表示)

(七)根号

语法效果描述
\sqrt{3} 3 \sqrt{3} 3 平方根
\sqrt[n]{3} 3 n \sqrt[n]{3} n3 n 次方根

(八)关系符号

语法效果描述
\Delta ABC\sim\Delta XYZ Δ A B C ∼ Δ X Y Z \Delta ABC\sim\Delta XYZ ΔABCΔXYZ表示三角形相似
\sqrt{3}\approx1.732050808\ldots 3 ≈ 1.732050808 … \sqrt{3}\approx1.732050808\ldots 3 1.732050808表示近似等于
\simeq ≃ \simeq 表示近似等于
\cong ≅ \cong 表示全等
\dot= = ˙ \dot= =˙表示点等于
\ggg ⋙ \ggg 表示远大于
\gg ≫ \gg 表示大于等于
> > > >表示大于
\ge ≥ \ge 表示大于等于
\geqq ≧ \geqq 表示大于等于
= = = =表示等于
\leq ≤ \leq 表示小于等于
\leqq ≦ \leqq 表示小于等于
< < < <表示小于
\ll ≪ \ll 表示小于等于
\lll ⋘ \lll 表示远小于
\equiv ≡ \equiv 表示恒等
x\not\equiv N x ≢ N x\not\equiv N xN表示不恒等
x\ne A x ≠ A x\ne A x=A表示不等于
x\neq C x ≠ C x\neq C x=C表示不等于
t\propto v t ∝ v t\propto v tv表示正比于
\pm ± \pm ±表示正负
\mp ∓ \mp 表示负正

(九)几何符号

语法效果描述
\Diamond ◊ \Diamond 菱形
\Box □ \Box 正方形
\Delta Δ \Delta Δ三角形
\angle\Alpha\Beta\Gamma ∠ A B Γ \angle\Alpha\Beta\Gamma ABΓ表示角名
\sin\frac{\pi}{3}=\sin60^\circ=\frac{\sqrt{3}}{2} sin ⁡ π 3 = sin ⁡ 6 0 ∘ = 3 2 \sin\frac{\pi}{3}=\sin60^\circ=\frac{\sqrt{3}}{2} sin3π=sin60=23 表示角度的正弦值
\perp ⊥ \perp 表示垂直

(十)箭头符号

语法效果描述
\leftarrow ← \leftarrow 左箭头
\gets ← \gets 左箭头(另一种表示)
\rightarrow → \rightarrow 右箭头
\to → \to 右箭头(另一种表示)
\leftrightarrow ↔ \leftrightarrow 双向箭头
\longleftarrow ⟵ \longleftarrow 长左箭头
\longrightarrow ⟶ \longrightarrow 长右箭头
\mapsto ↦ \mapsto 映射到
\longmapsto ⟼ \longmapsto 长映射到
\hookrightarrow ↪ \hookrightarrow 带钩的右箭头
\hookleftarrow ↩ \hookleftarrow 带钩的左箭头
\nearrow ↗ \nearrow 向右上箭头
\searrow ↘ \searrow 向右下箭头
\swarrow ↙ \swarrow 向左下箭头
\nwarrow ↖ \nwarrow 向左上箭头
\uparrow ↑ \uparrow 向上箭头
\downarrow ↓ \downarrow 向下箭头
\updownarrow ↕ \updownarrow 向上向下箭头
\rightharpoonup ⇀ \rightharpoonup 右上钩箭头
\rightharpoondown ⇁ \rightharpoondown 右下钩箭头
\leftharpoonup ↼ \leftharpoonup 左上钩箭头
\leftharpoondown ↽ \leftharpoondown 左下钩箭头
\upharpoonleft ↿ \upharpoonleft 向左上钩箭头
\upharpoonright ↾ \upharpoonright 向右上钩箭头
\downharpoonleft ⇃ \downharpoonleft 向左下钩箭头
\downharpoonright ⇂ \downharpoonright 向右下钩箭头
\Leftarrow ⇐ \Leftarrow 左双箭头
\Rightarrow ⇒ \Rightarrow 右双箭头
\Leftrightarrow ⇔ \Leftrightarrow 双向双箭头
\Longleftarrow ⟸ \Longleftarrow 长左双箭头
\Longrightarrow ⟹ \Longrightarrow 长右双箭头
\Longleftrightarrow ⟺ \Longleftrightarrow 长双向双箭头
\Uparrow ⇑ \Uparrow 向上双箭头
\Downarrow ⇓ \Downarrow 向下双箭头
\Updownarrow ⇕ \Updownarrow 向上向下双箭头

(十一)特殊符号

语法效果描述
\eth ð \eth ð丹麦字母 eth
\S § \S §段落符号
\% % \% %百分号
\dagger † \dagger 用于表示死亡或结束
\ddagger ‡ \ddagger 双匕首符号
\star ⋆ \star 星号
\ldots … \ldots 横向省略号
\smile ⌣ \smile 上弧符号
\frown ⌢ \frown 下弧符号
\wr ≀ \wr 旋转符号
\oplus ⊕ \oplus 圆环加号
\bigoplus ⨁ \bigoplus 大圆环加号
\otimes ⊗ \otimes 张量积符号
\bigotimes ⨂ \bigotimes 大张量积符号
\times × \times ×乘号
\cdot ⋅ \cdot 点乘符号
\div ÷ \div ÷除号
\circ ∘ \circ 圆圈符号
\bullet ∙ \bullet 实心圆点
\bigodot ⨀ \bigodot 大圆圈符号
\boxtimes ⊠ \boxtimes 方框乘号
\boxplus ⊞ \boxplus 方框加号
\triangleleft ◃ \triangleleft 左三角符号
\triangleright ▹ \triangleright 右三角符号
\infty ∞ \infty 无穷大符号
\bot ⊥ \bot 垂直符号
\top ⊤ \top 顶部符号
\vdash ⊢ \vdash 推导符号
\vDash ⊨ \vDash 双推导符号
\Vdash ⊩ \Vdash 强推导符号
\models ⊨ \models 模型符号
\lVert ∥ \lVert 左范数符号
\rVert ∥ \rVert 右范数符号
\imath ı \imath 无点的 i
\hbar ℏ \hbar 约化普朗克常数
\ell ℓ \ell 数学常数 ell
\mho ℧ \mho 电导单位符号
\Finv Ⅎ \Finv 有限群的逆元素
\Re ℜ \Re 实部符号
\Im ℑ \Im 虚部符号
\wp ℘ \wp 魏尔斯特拉斯椭圆函数符号
\complement ∁ \complement 补集符号
\diamondsuit ♢ \diamondsuit 菱形符号(牌面)
\heartsuit ♡ \heartsuit 红心符号(牌面)
\clubsuit ♣ \clubsuit 梅花符号(牌面)
\spadesuit ♠ \spadesuit 黑桃符号(牌面)
\Game ⅁ \Game 博弈符号
\flat ♭ \flat 降调符号
\natural ♮ \natural 自然符号
\sharp ♯ \sharp 升调符号

四、上标、下标及积分等

(一)上标和下标

功能语法效果描述
上标a^2 a 2 a^2 a2表示 a 的平方
下标a_2 a 2 a_2 a2表示 a 的第二个元素
组合上标a^{2+2} a 2 + 2 a^{2+2} a2+2表示 a 的 2+2 次方
组合下标a_{i,j} a i , j a_{i,j} ai,j表示 a 的 i,j 元素
结合上下标x_2^3 x 2 3 x_2^3 x23表示 x 的 2 次方的 3 次方
前置上下标{}_1^2\!X_3^4 1 2  ⁣ X 3 4 {}_1^2\!X_3^4 12X34表示前置上下标和后置上下标

(二)导数

功能语法效果描述
导数(HTML)x' x ′ x' x表示 x 的一阶导数
导数(PNG)x^\prime x ′ x^\prime x表示 x 的一阶导数
导数点\dot{x} x ˙ \dot{x} x˙表示 x 的一阶导数
\ddot{y} y ¨ \ddot{y} y¨表示 y 的二阶导数

(三)向量

语法效果描述
\vec{c} c ⃗ \vec{c} c 表示向量 c
\overleftarrow{a b} a b ← \overleftarrow{a b} ab 表示从 a 到 b 的向量
\overrightarrow{c d} c d → \overrightarrow{c d} cd 表示从 c 到 d 的向量
\widehat{e f g} e f g ^ \widehat{e f g} efg 表示 e, f, g 的单位向量
\overset{\frown}{AB} A B ⌢ \overset{\frown}{AB} AB表示 AB 的弧

(四)上下括号

类型语法效果描述
上括号\overbrace{1+2+\cdots+100} 1 + 2 + ⋯ + 100 ⏞ \overbrace{1+2+\cdots+100} 1+2++100 在表达式上方添加括号
下括号\underbrace{a+b+\cdots+z} a + b + ⋯ + z ⏟ \underbrace{a+b+\cdots+z} a+b++z在表达式下方添加括号

(五)求和与积分

功能语法效果描述
求和\sum_{k=1}^N k^2 ∑ k = 1 N k 2 \sum_{k=1}^N k^2 k=1Nk2求和符号
求积\prod_{i=1}^N x_i ∏ i = 1 N x i \prod_{i=1}^N x_i i=1Nxi求积符号
上积\coprod_{i=1}^N x_i ∐ i = 1 N x i \coprod_{i=1}^N x_i i=1Nxi上积符号
极限\lim_{n \to \infty}x_n lim ⁡ n → ∞ x n \lim_{n \to \infty}x_n limnxn极限符号
积分\int_{-N}^{N} e^x\, dx ∫ − N N e x   d x \int_{-N}^{N} e^x\, dx NNexdx积分符号
双重积分\iint_{D}^{W} \, dx\,dy$\iint_{D}^{W} , dx,dy`双重积分符号
三重积分\iiint_{E}^{V} \, dx\,dy\,dz ∭ E V   d x   d y   d z \iiint_{E}^{V} \, dx\,dy\,dz EVdxdydz三重积分符号
四重积分\iiiint_{F}^{U} \, dx\,dy\,dz\,dtKaTeX parse error: Undefined control sequence: \iiiint at position 1: \̲i̲i̲i̲i̲n̲t̲_{F}^{U} \, dx\…四重积分符号
闭合曲线积分\oint_{C} x^3 \, dx + 4y^2\, dy ∮ C x 3   d x + 4 y 2   d y \oint_{C} x^3\, dx + 4y^2\, dy Cx3dx+4y2dy闭合曲线积分符号

(六)分数

功能语法效果描述
分数\frac{2}{4}=0.5 2 4 = 0.5 \frac{2}{4}=0.5 42=0.5表示分数
小型分数\tfrac{2}{4} = 0.5 2 4 = 0.5 \tfrac{2}{4} = 0.5 42=0.5小型分数符号
大型分数(嵌套)\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a 2 c + 2 d + 2 4 = a \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a c+d+4222=a大型嵌套分数符号
大型分数(不嵌套)\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a 2 4 = 0.5 2 c + 2 d + 2 4 = a \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a 42=0.5c+d+4222=a大型分数符号

(七)矩阵

功能语法效果描述
矩阵\begin{matrix} x & y \\ z & v \\end{matrix} x y z v \begin{matrix} x & y \\ z & v \end{matrix} xzyv无框矩阵
行列式\begin{vmatrix} x & y \\ z & v \\end{vmatrix} ∣ x y z v ∣ \begin{vmatrix} x & y \\ z & v \end{vmatrix} xzyv 矩阵的行列式
矩阵范数\begin{Vmatrix} x & y \\ z & v \\end{Vmatrix} ∥ x y z v ∥ \begin{Vmatrix} x & y \\ z & v \end{Vmatrix} xzyv 矩阵的范数
矩阵框\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\end{bmatrix} [ 0 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 0 ] \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} 0000 矩阵的方框表示
矩阵大括号\begin{Bmatrix} x & y \\ z & v \\end{Bmatrix} { x y z v } \begin{Bmatrix} x & y \\ z & v \end{Bmatrix} {xzyv}矩阵的大括号表示
矩阵小括号\begin{pmatrix} x & y \\ z & v \\end{pmatrix} ( x y z v ) \begin{pmatrix} x & y \\ z & v \end{pmatrix} (xzyv)矩阵的小括号表示
小矩阵\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) ( a b c d ) \bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) (acbd)小型矩阵符号

(八)条件定义

语法效果描述
f(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases} f ( n ) = { n / 2 , if  n  is even 3 n + 1 , if  n  is odd f(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases} f(n)={n/2,3n+1,if n is evenif n is odd条件函数定义

(九)多行等式

语法效果描述
\begin{align} f(x) & = (m+n)^2 \\ & = m^2+2mn+n^2 \\ \end{align}KaTeX parse error: {align} can be used only in display mode.多行等式对齐
\begin{alignat}{2} f(x) & = (m-n)^2 \\ f(x) & = (-m+n)^2 \\ & = m^2-2mn+n^2 \\ \end{alignat}KaTeX parse error: {alignat} can be used only in display mode.多行等式对齐(指定列数)

(十)方程组

语法效果描述
\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} { 3 x + 5 y + z 7 x − 2 y + 4 z − 6 x + 3 y + 2 z \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} 3x+5y+z7x2y+4z6x+3y+2z方程组符号

(十一)数组

数组或表格

通常,一个格式化后的表格比单纯的文字或排版后的文字更具有可读性。

数组和表格均以 \begin{array} 开头,并在其后定义列数及每一列的文本对齐属性,c l r 分别代表居中、左对齐及右对齐。若需要插入垂直分割线,在定义式中插入 | ,若要插入水平分割线,在下一行输入前插入 \hline

与矩阵相似,每行元素间均须要插入 & ,每行元素以 \\ 结尾,最后以 \ end{array} 结束数组。

使用单个数组或表格时无需声明 $$$ 符号。

例 1

\begin{array}{|c|c||c|} 
a & b & S \\ 
\hline 
0&0&1\\ 
0&1&1\\ 
1&0&1\\ 
1&1&0\\ 
\end{array}

效果

a b S 0 0 1 0 1 1 1 0 1 1 1 0 \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} a0011b0101S1110

例 2

\begin{array}{c|lcr}
    n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\
    \hline
    1 & 0.24 & 1 & 125 \\
    2 & -1 & 189 & -8 \\
    3 & -20 & 2000 & 1+10i \\
\end{array}

显示
n 左对齐 居中对齐 右对齐 1 0.24 1 125 2 − 1 189 − 8 3 − 20 2000 1 + 10 i \begin{array}{c|lcr} n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \\ \end{array} n123左对齐0.24120居中对齐11892000右对齐12581+10i

嵌套的数组或表格

多个数组\表格可 互相嵌套 并组成一组数组或表格。
使用嵌套前必须声明 $$ 符号。

\begin{array}{c} % 总表格
    \begin{array}{cc} % 第一行内分成两列
        \begin{array}{c|cccc} % 第一列"最小值"数组
            \text{min} & 0 & 1 & 2 & 3 \\
            \hline
            0 & 0 & 0 & 0 & 0 \\
            1 & 0 & 1 & 1 & 1 \\
            2 & 0 & 1 & 2 & 2 \\
            3 & 0 & 1 & 2 & 3 \\
        \end{array}
        &
        \begin{array}{c|cccc} % 第二列"最大值"数组
            \text{max} & 0 & 1 & 2 & 3 \\
            \hline
            0 & 0 & 1 & 2 & 3 \\
            1 & 1 & 1 & 2 & 3 \\
            2 & 2 & 2 & 2 & 3 \\
            3 & 3 & 3 & 3 & 3 \\
        \end{array}
    \end{array} % 第一行表格组结束
    \\
    \begin{array}{c|cccc} % 第二行 Delta 值数组
        \Delta & 0 & 1 & 2 & 3 \\
        \hline
        0 & 0 & 1 & 2 & 3 \\
        1 & 1 & 0 & 1 & 2 \\
        2 & 2 & 1 & 0 & 1 \\
        3 & 3 & 2 & 1 & 0 \\
    \end{array} % 第二行表格结束
\end{array} % 总表格结束

显示

min 0 1 2 3 0 0 0 0 0 1 0 1 1 1 2 0 1 2 2 3 0 1 2 3 max 0 1 2 3 0 0 1 2 3 1 1 1 2 3 2 2 2 2 3 3 3 3 3 3 Δ 0 1 2 3 0 0 1 2 3 1 1 0 1 2 2 2 1 0 1 3 3 2 1 0 \begin{array}{c} % 总表格 \begin{array}{cc} % 第一行内分成两列 \begin{array}{c|cccc} % 第一列"最小值"数组 \text{min} & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 2 & 0 & 1 & 2 & 2 \\ 3 & 0 & 1 & 2 & 3 \\ \end{array} & \begin{array}{c|cccc} % 第二列"最大值"数组 \text{max} & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 2 & 3 \\ 2 & 2 & 2 & 2 & 3 \\ 3 & 3 & 3 & 3 & 3 \\ \end{array} \end{array} % 第一行表格组结束 \\ \begin{array}{c|cccc} % 第二行 Delta 值数组 \Delta & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 1 & 2 & 3 \\ 1 & 1 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 1 \\ 3 & 3 & 2 & 1 & 0 \\ \end{array} % 第二行表格结束 \end{array} % 总表格结束 min012300000101112012230123max012300123111232222333333Δ012300123110122210133210

五、字体

(一)希腊字母

类型语法效果描述
大写希腊字母\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta A B Γ Δ E Z H Θ \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta ABΓΔEZHΘ大写希腊字母
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi I K Λ M N Ξ O Π \Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi IKΛMNΞOΠ大写希腊字母
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega P Σ T Υ Φ X Ψ Ω \Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega PΣTΥΦXΨΩ大写希腊字母
小写希腊字母\alpha \beta \gamma \delta \epsilon \zeta \eta \theta α β γ δ ϵ ζ η θ \alpha \beta \gamma \delta \epsilon \zeta \eta \theta αβγδϵζηθ小写希腊字母
\iota \kappa \lambda \mu \nu \omicron \xi \pi ι κ λ μ ν ο ξ π \iota \kappa \lambda \mu \nu \omicron \xi \pi ικλμνοξπ小写希腊字母
\rho \sigma \tau \upsilon \phi \chi \psi \omega ρ σ τ υ ϕ χ ψ ω \rho \sigma \tau \upsilon \phi \chi \psi \omega ρστυϕχψω小写希腊字母
异体字母\varepsilon \digamma \varkappa \varpi ε ϝ ϰ ϖ \varepsilon \digamma \varkappa \varpi εϝϰϖ希腊字母的变体
\varrho \varsigma \vartheta \varphi ϱ ς ϑ φ \varrho \varsigma \vartheta \varphi ϱςϑφ希腊字母的变体

(二)希伯来符号

语法效果描述
\aleph \beth \gimel \daleth ℵ ℶ ℷ ℸ \aleph \beth \gimel \daleth ℶℷℸ希伯来字母

(三)部分字体的简称

语法显示描述
\rm S a m p l e \rm{Sample} Sample罗马体
\mathcal S A M P L E \mathcal{SAMPLE} SAMPLE书法体
\it S a m p l e \it{Sample} Sample意大利体
\mathbb S A M P L E \mathbb{SAMPLE} SAMPLE黑板粗体 (双线字体)
\bf S a m p l e \bf{Sample} Sample粗体
\mathit S A M P L E \mathit{SAMPLE} SAMPLE斜体
\sf S a m p l e \sf{Sample} Sample等线体
\tt S a m p l e \tt{Sample} Sample打字机体
\mathfrak S a m p l e \mathfrak{Sample} Sample哥特体 / 旧德式字体
\mathscr S A M P L E \mathscr{SAMPLE} SAMPLE手写体 / 脚本字体

(四)部分字母有以 \var- 开头的变量专用形式

小写形式大写形式变量形式显示
\epsilon\Epsilon\varepsilon ε \varepsilon ε
\theta\Theta\vartheta ϑ \vartheta ϑ
\rho\Rho\varrho ϱ \varrho ϱ
\sigma\Sigma\varsigma ς \varsigma ς
\phi\Phi\varphi φ \varphi φ

(四)所有字体

类型语法效果描述
黑板报粗体\mathbb{ABCDEFGHI} A B C D E F G H I \mathbb{ABCDEFGHI} ABCDEFGHI黑板报粗体字母
\mathbb{JKLMNOPQR} J K L M N O P Q R \mathbb{JKLMNOPQR} JKLMNOPQR黑板报粗体字母
\mathbb{STUVWXYZ} S T U V W X Y Z \mathbb{STUVWXYZ} STUVWXYZ黑板报粗体字母
粗体\mathbf{ABCDEFGHI} A B C D E F G H I \mathbf{ABCDEFGHI} ABCDEFGHI粗体字母
\mathbf{abcdefghijklm} a b c d e f g h i j k l m \mathbf{abcdefghijklm} abcdefghijklm粗体字母
\mathbf{0123456789} 0123456789 \mathbf{0123456789} 0123456789粗体数字
斜体\mathit{0123456789} 0123456789 \mathit{0123456789} 0123456789斜体数字
\mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} A B Γ Δ E Z H Θ \mathit{\Alpha\Beta\Gamma\Delta\Epsilon\Zeta\Eta\Theta} ABΓΔEZHΘ斜体希腊字母
罗马体\mathrm{ABCDEFGHI} A B C D E F G H I \mathrm{ABCDEFGHI} ABCDEFGHI罗马体字母
\mathrm{abcdefghijklm} a b c d e f g h i j k l m \mathrm{abcdefghijklm} abcdefghijklm罗马体字母
\mathrm{0123456789} 0123456789 \mathrm{0123456789} 0123456789罗马体数字
无衬线体\mathsf{ABCDEFGHI} A B C D E F G H I \mathsf{ABCDEFGHI} ABCDEFGHI无衬线体字母
\mathsf{abcdefghijklm} a b c d e f g h i j k l m \mathsf{abcdefghijklm} abcdefghijklm无衬线体字母
\mathsf{0123456789} 0123456789 \mathsf{0123456789} 0123456789无衬线体数字
手写体/花体\mathcal{ABCDEFGHI} A B C D E F G H I \mathcal{ABCDEFGHI} ABCDEFGHI手写体/花体字母
\mathcal{JKLMNOPQR} J K L M N O P Q R \mathcal{JKLMNOPQR} JKLMNOPQR手写体/花体字母
\mathcal{STUVWXYZ} S T U V W X Y Z \mathcal{STUVWXYZ} STUVWXYZ手写体/花体字母
Fraktur体\mathfrak{ABCDEFGHI} A B C D E F G H I \mathfrak{ABCDEFGHI} ABCDEFGHIFraktur体字母
\mathfrak{abcdefghijklm} a b c d e f g h i j k l m \mathfrak{abcdefghijklm} abcdefghijklmFraktur体字母
\mathfrak{0123456789} 0123456789 \mathfrak{0123456789} 0123456789Fraktur体数字
小型手写体{\scriptstyle\text{abcdefghijklm}} abcdefghijklm {\scriptstyle\text{abcdefghijklm}} abcdefghijklm小型手写体字母

(五)混合字体

特征语法效果描述
斜体字符x y z x y z xyz xyz斜体字符
非斜体字符\text{x y z} x y z \text{x y z} x y z非斜体字符
混合斜体\text{if }n\text{ is even} if  n  is even \text{if }n\text{ is even} if n is even混合斜体字符
混合斜体\text{if}~n\ \text{is even} if  n  is even \text{if}~n\ \text{is even} if n is even混合斜体字符(带空格)

六、注释文本

描述语法效果
注释文本\text {文字} 文字 \text {文字} 文字
公式中注释f(n)= \begin{cases}n/2, & \text {if $n$ is even} \\ 3n+1, &\text{if $n$ is odd}\end{cases} f ( n ) = { n / 2 , if  n  is even 3 n + 1 , if  n  is odd f(n)= \begin{cases}n/2, & \text {if $n$ is even} \\ 3n + 1, & \text{if $n$ is odd}\end{cases} f(n)={n/2,3n+1,if n is evenif n is odd

七、括号

功能语法效果描述
短括号\frac{1}{2} 1 2 \frac{1}{2} 21使用 \frac 语法表示分数。
长括号\left(\frac{1}{2} \right) ( 1 2 ) \left(\frac{1}{2}\right) (21)自动调整大小的圆括号
圆括号\left( \frac{a}{b} \right) ( a b ) \left(\frac{a}{b}\right) (ba)自动调整大小的圆括号
方括号\left[ \frac{a}{b} \right] [ a b ] \left[\frac{a}{b}\right] [ba]自动调整大小的方括号
花括号\left\{ \frac{a}{b} \right\} { a b } \left\{\frac{a}{b}\right\} {ba}自动调整大小的花括号
角括号\left \langle \frac{a}{b} \right \rangle ⟨ a b ⟩ \left\langle \frac{a}{b}\right\rangle ba自动调整大小的角括号
单竖线\left | \frac{a}{b} \right| ∣ a b ∣ \left| \frac{a}{b} \right| ba 自动调整大小的单竖线
双竖线\left \| \frac{a}{b} \right \| ∥ a b ∥ \left\| \frac{a}{b} \right\| ba 自动调整大小的双竖线
取整函数\left \lfloor \frac{a}{b} \right \rfloor ⌊ a b ⌋ \left\lfloor \frac{a}{b} \right\rfloor ba自动调整大小的取整函数符号
取顶函数\left \lceil \frac{c}{d} \right \rceil ⌈ c d ⌉ \left\lceil \frac{c}{d} \right\rceil dc自动调整大小的取顶函数符号
斜线与反斜线\left / \frac{a}{b} \right \backslash / a b \ \left/ \frac{a}{b} \right\backslash /ba\自动调整大小的斜线与反斜线
上下箭头\left \uparrow \frac{a}{b} \right \downarrow ↑ a b ↓ \left\uparrow \frac{a}{b} \right\downarrow ba 自动调整大小的上下箭头
混合括号\left[ 0,1 \right) [ 0 , 1 ) \left[0,1\right) [0,1)混合括号
单左花括号\left \{\frac{a}{b} \right. { a b \left\{\frac{a}{b}\right. {ba只显示左花括号
单右花括号\left. \frac{a}{b} \right \} a b } \left. \frac{a}{b} \right\} ba}只显示右花括号

控制括号大小

语法效果描述
\big ( ) \big( \big) ()手动设置括号大小
\Big ( ) \Big( \Big) ()手动设置括号大小
\bigg ( ) \bigg( \bigg) ()手动设置括号大小
\Bigg ( ) \Bigg( \Bigg) ()手动设置括号大小

例如:
语法:\Bigg ( \bigg [ \Big \{ \big \langle \left | \left \| \frac{a}{b} \right \| \right | \big \rangle \Big \} \bigg ] \Bigg )
显示为: ( [ { ⟨ ∣ ∥ a b ∥ ∣ ⟩ } ] ) \Bigg ( \bigg [ \Big \{ \big \langle \left | \left \| \frac{a}{b} \right \| \right | \big \rangle \Big \} \bigg ] \Bigg ) ([{ ba }])

八、连线符号

输入显示描述
\fbox{a+b+c+d}$\fbox{a+b+c+d} $给表达式 (a + b + c + d) 添加一个矩形边框
\overleftarrow{a+b+c+d} a + b + c + d ← \overleftarrow{a+b+c+d} a+b+c+d 在表达式 (a + b + c + d) 的上方添加一个向左的箭头
\overrightarrow{a+b+c+d} a + b + c + d → \overrightarrow{a+b+c+d} a+b+c+d 在表达式 (a + b + c + d) 的上方添加一个向右的箭头
\overleftrightarrow{a+b+c+d} a + b + c + d ↔ \overleftrightarrow{a+b+c+d} a+b+c+d 在表达式 (a + b + c + d) 的上方添加一个双向箭头(左和右)
\underleftarrow{a+b+c+d} a + b + c + d ← \underleftarrow{a+b+c+d} a+b+c+d在表达式 (a + b + c + d) 的下方添加一个向左的箭头
\underrightarrow{a+b+c+d} a + b + c + d → \underrightarrow{a+b+c+d} a+b+c+d在表达式 (a + b + c + d) 的下方添加一个向右的箭头
\underleftrightarrow{a+b+c+d} a + b + c + d ↔ \underleftrightarrow{a+b+c+d} a+b+c+d在表达式 (a + b + c + d) 的下方添加一个双向箭头(左和右)
\overline{a+b+c+d} a + b + c + d ‾ \overline{a+b+c+d} a+b+c+d在表达式 (a + b + c + d) 的上方添加一条横线,常用于表示平均数、共轭等数学概念
\underline{a+b+c+d} a + b + c + d ‾ \underline{a+b+c+d} a+b+c+d在表达式 (a + b + c + d) 的下方添加一条横线,可用于强调或特定的数学表示
\overbrace{a+b+c+d}^{Sample} a + b + c + d ⏞ S a m p l e \overbrace{a+b+c+d}^{Sample} a+b+c+d Sample在表达式 (a + b + c + d) 的上方添加一个花括号,并在花括号上方标注文字“Sample”,通常用于分组说明或表示范围等
\underbrace{a+b+c+d}_{Sample} a + b + c + d ⏟ S a m p l e \underbrace{a+b+c+d}_{Sample} Sample a+b+c+d在表达式 (a + b + c + d) 的下方添加一个花括号,并在花括号下方标注文字“Sample” ,常用于分组说明或表示范围等
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} a + b + c ⏟ 1.0 + d ⏞ 2.0 \overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} a+1.0 b+c+d 2.0先在表达式 (b + c) 的下方添加一个花括号并标注“1.0”,然后在整个表达式 (a + \underbrace{b + c}_{1.0} + d) 的上方添加一个花括号并标注“2.0”,用于表示多层分组和相关说明
\underbrace{a\cdot a\cdots a}_{b\text{ times}} a ⋅ a ⋯ a ⏟ b  times \underbrace{a\cdot a\cdots a}_{b\text{ times}} b times aaa在 (b) 个 (a) 相乘的表达式 (a\cdot a\cdots a) 的下方添加一个花括号,并在花括号下方标注“(b) times”,表示 (a) 重复相乘 (b) 次

九、空格

功能语法效果宽度
2个quad空格\alpha\qquad\beta α β \alpha \qquad \beta αβ 2 m 2m 2m
quad空格\alpha\quad\beta α β \alpha \quad \beta αβ m m m
大空格\alpha\ \beta α   β \alpha \ \beta α β m 3 \frac{m}{3} 3m
中等空格\alpha\;\beta α    β \alpha \;\beta αβ 2 m 7 \frac{2m}{7} 72m
小空格\alpha\,\beta α   β \alpha \,\beta αβ m 6 \frac{m}{6} 6m
没有空格\alpha\beta α β \alpha \beta αβ 0 0 0
紧贴\alpha\!\beta α  ⁣ β \alpha \!\beta αβ − m 6 -\frac{m}{6} 6m

十、符号的含义或用途分类表(与上面有重复,未去重)

(1).关系运算符

输入显示描述
\pm ± \pm ±表示正负号,例如在求一元二次方程的根时会用到,如 x = − b ± b 2 − 4 a c 2 a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} x=2ab±b24ac
\times × \times ×乘法运算符号,如 2 × 3 = 6 2 \times 3 = 6 2×3=6
\div ÷ \div ÷除法运算符号,如 6 ÷ 2 = 3 6 \div 2 = 3 6÷2=3
\mid ∣ \mid 表示整除关系, a ∣ b a \mid b ab 表示 a a a 能整除 b b b ,即 b b b 除以 a a a 的余数为 0 0 0
\nmid ∤ \nmid 表示不整除关系, a ∤ b a \nmid b ab 表示 a a a 不能整除 b b b ,即 b b b 除以 a a a 的余数不为 0 0 0
\cdot ⋅ \cdot 常用于表示乘法,在一些情况下比 × \times × 更常用,如向量的点积 a ⃗ ⋅ b ⃗ \vec{a} \cdot \vec{b} a b
\circ ∘ \circ 可表示函数的复合运算,如 ( f ∘ g ) ( x ) = f ( g ( x ) ) (f \circ g)(x) = f(g(x)) (fg)(x)=f(g(x)) ,也用于一些特定的数学结构中表示运算。
\ast ∗ \ast 常用来定义某种特定的二元运算,具体含义根据上下文而定。
\odot ⊙ \odot 在不同数学领域有不同含义,如在一些代数结构中表示特定的运算,在几何中也可能有特殊用途。
\otimes ⊗ \otimes 常见于线性代数中表示张量积,也用于其他数学领域表示特定的乘积运算。
\oplus ⊕ \oplus 可表示直和运算,在向量空间、群等数学结构中有重要应用,也用于逻辑运算中的异或运算。
\leq ≤ \leq 小于等于关系,如 x ≤ 5 x \leq 5 x5 表示 x x x 的取值小于或等于 5 5 5
\geq ≥ \geq 大于等于关系,如 y ≥ 3 y \geq 3 y3 表示 y y y 的取值大于或等于 3 3 3
\neq ≠ \neq =不等于关系,如 a ≠ b a \neq b a=b 表示 a a a b b b 的值不相等。
\approx ≈ \approx 表示约等于,用于表示两个数或表达式的值近似相等,如 π ≈ 3.14 \pi \approx 3.14 π3.14
\equiv ≡ \equiv 在数论中表示同余关系,如 a ≡ b ( m o d m ) a \equiv b \pmod{m} ab(modm) ,也用于表示恒等关系。
\sum ∑ \sum 求和符号, ∑ i = 1 n a i = a 1 + a 2 + ⋯ + a n \sum_{i = 1}^{n} a_i = a_1 + a_2 + \cdots + a_n i=1nai=a1+a2++an
\prod ∏ \prod 求积符号, ∏ i = 1 n a i = a 1 × a 2 × ⋯ × a n \prod_{i = 1}^{n} a_i = a_1 \times a_2 \times \cdots \times a_n i=1nai=a1×a2××an
\coprod ∐ \coprod 余积符号,在范畴论等领域有重要应用,是积的对偶概念。
\backslash \ \backslash \集合论中表示差集运算, A \ B = { x ∈ A  且  x ∉ B } A \backslash B = \{x \in A \text{ 且 } x \notin B\} A\B={xA  x/B}

(2).集合运算符

输入显示描述
\emptyset ∅ \emptyset 表示空集,不含任何元素的集合。
\in ∈ \in 表示元素属于集合,如 x ∈ A x \in A xA 表示 x x x 是集合 A A A 的元素。
\notin ∉ \notin /表示元素不属于集合,如 y ∉ B y \notin B y/B 表示 y y y 不是集合 B B B 的元素。
\subset ⊂ \subset 表示真子集关系, A ⊂ B A \subset B AB 表示 A A A B B B 的真子集,即 A A A 的所有元素都在 B B B 中且 B B B 中至少有一个元素不在 A A A 中。
\supset ⊃ \supset 表示真超集关系, A ⊃ B A \supset B AB 等价于 B ⊂ A B \subset A BA ,即 A A A 包含 B B B A A A 中至少有一个元素不在 B B B 中。
\subseteq ⊆ \subseteq 表示子集关系, A ⊆ B A \subseteq B AB 表示 A A A 的所有元素都在 B B B 中, A A A 可以等于 B B B
\supseteq ⊇ \supseteq 表示超集关系, A ⊇ B A \supseteq B AB 等价于 B ⊆ A B \subseteq A BA ,即 A A A 包含 B B B A A A 可以等于 B B B
\cap ∩ \cap 表示交集运算, A ∩ B = { x ∈ A  且  x ∈ B } A \cap B = \{x \in A \text{ 且 } x \in B\} AB={xA  xB}
\cup ∪ \cup 表示并集运算, A ∪ B = { x ∈ A  或  x ∈ B } A \cup B = \{x \in A \text{ 或 } x \in B\} AB={xA  xB}
\vee ∨ \vee 在逻辑运算中表示“或”,在集合论中有时也用于表示并集(类似 ∪ \cup ),在布尔代数等领域有重要应用。
\wedge ∧ \wedge 在逻辑运算中表示“且”,在集合论中有时也用于表示交集(类似 ∩ \cap ),在布尔代数等领域有重要应用。
\uplus ⊎ \uplus 表示不相交并集,即两个集合的并集且这两个集合没有公共元素。
\top ⊤ \top 在逻辑中表示“真”,在格论等领域也有相应的含义。
\bot ⊥ \bot 在逻辑中表示“假”,在格论等领域表示最小元素等含义。
\complement ∁ \complement 表示补集,在全集 U U U 中,集合 A A A 的补集 ∁ U A = { x ∈ U  且  x ∉ A } \complement_U A = \{x \in U \text{ 且 } x \notin A\} UA={xU  x/A}

(3).对数运算符

输入显示描述
\log log ⁡ \log log一般表示以某个数为底的对数,默认底数不写时通常为 10 10 10 (常用对数), log ⁡ a b \log_a b logab 表示以 a a a 为底 b b b 的对数,即 a x = b a^x = b ax=b 中的 x = log ⁡ a b x = \log_a b x=logab
\lg lg ⁡ \lg lg表示以 10 10 10 为底的对数,即常用对数,如 lg ⁡ 100 = 2 \lg 100 = 2 lg100=2
\ln ln ⁡ \ln ln表示以自然常数 e e e 为底的对数,即自然对数, ln ⁡ e = 1 \ln e = 1 lne=1

(4).三角运算符

输入显示描述
\backsim ∽ \backsim 常用于表示两个几何图形相似,如 △ A B C ∽ △ D E F \triangle ABC \backsim \triangle DEF ABCDEF 表示三角形 A B C ABC ABC 与三角形 D E F DEF DEF 相似。
\cong ≅ \cong 表示全等关系,如 △ A B C ≅ △ D E F \triangle ABC \cong \triangle DEF ABCDEF 表示三角形 A B C ABC ABC 与三角形 D E F DEF DEF 全等。
\angle A ∠ A \angle A A表示角 A A A ,用于几何中表示角的符号。
\sin sin ⁡ \sin sin正弦函数,在直角三角形中,一个锐角的正弦等于它的对边与斜边的比值,如 sin ⁡ A = a c \sin A = \frac{a}{c} sinA=ca a a a 为角 A A A 的对边, c c c 为斜边)。
\cos cos ⁡ \cos cos余弦函数,在直角三角形中,一个锐角的余弦等于它的邻边与斜边的比值,如 cos ⁡ A = b c \cos A = \frac{b}{c} cosA=cb b b b 为角 A A A 的邻边, c c c 为斜边)。
\tan tan ⁡ \tan tan正切函数,在直角三角形中,一个锐角的正切等于它的对边与邻边的比值,如 tan ⁡ A = a b \tan A = \frac{a}{b} tanA=ba a a a 为角 A A A 的对边, b b b 为角 A A A 的邻边)。
\csc csc ⁡ \csc csc余割函数,是正弦函数的倒数, csc ⁡ A = 1 sin ⁡ A \csc A = \frac{1}{\sin A} cscA=sinA1
\sec sec ⁡ \sec sec正割函数,是余弦函数的倒数, sec ⁡ A = 1 cos ⁡ A \sec A = \frac{1}{\cos A} secA=cosA1
\cot cot ⁡ \cot cot余切函数,是正切函数的倒数, cot ⁡ A = 1 tan ⁡ A \cot A = \frac{1}{\tan A} cotA=tanA1

(5).微积分运算符

输入显示描述
\int ∫ \int 积分符号,用于不定积分和定积分, ∫ f ( x ) d x \int f(x)dx f(x)dx 表示函数 f ( x ) f(x) f(x) 的不定积分, ∫ a b f ( x ) d x \int_{a}^{b} f(x)dx abf(x)dx 表示函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上的定积分。
\iint ∬ \iint 二重积分符号,用于计算平面区域上的积分,如 ∬ D f ( x , y ) d x d y \iint_{D} f(x, y)dxdy Df(x,y)dxdy D D D 为平面区域)。
\iiint ∭ \iiint 三重积分符号,用于计算空间区域上的积分,如 ∭ V f ( x , y , z ) d x d y d z \iiint_{V} f(x, y, z)dxdydz Vf(x,y,z)dxdydz V V V 为空间区域)。
\partial ∂ \partial 偏导数符号,在多元函数中,如 z = f ( x , y ) z = f(x, y) z=f(x,y) ∂ z ∂ x \frac{\partial z}{\partial x} xz 表示 z z z x x x 的偏导数。
\oint ∮ \oint 曲线积分符号,用于计算沿封闭曲线的积分,如 ∮ C f ( x , y ) d s \oint_{C} f(x, y)ds Cf(x,y)ds C C C 为封闭曲线)。
\prime ′ ' 表示导数,如 y = f ( x ) y = f(x) y=f(x) 的导数可表示为 y ′ y' y f ′ ( x ) f'(x) f(x)
\lim lim ⁡ \lim lim极限符号, lim ⁡ x → a f ( x ) \lim_{x \to a} f(x) limxaf(x) 表示 x x x 趋近于 a a a 时函数 f ( x ) f(x) f(x) 的极限。
\infty ∞ \infty 表示无穷大,包括正无穷 + ∞ +\infty + 和负无穷 − ∞ -\infty ,用于描述极限过程等。
\nabla ∇ \nabla 梯度算子,在多元函数中,如 u = f ( x , y , z ) u = f(x, y, z) u=f(x,y,z) ∇ u = ( ∂ u ∂ x , ∂ u ∂ y , ∂ u ∂ z ) \nabla u = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}) u=(xu,yu,zu)

(6).逻辑运算符

输入显示描述
\because ∵ \because 表示“因为”,用于逻辑推理中阐述原因。
\therefore ∴ \therefore 表示“所以”,用于逻辑推理中引出结论。
\neg ¬ \neg ¬逻辑非运算符,对一个命题进行否定,若 P P P 为真命题,则 ¬ P \neg P ¬P 为假命题,反之亦然。
\forall ∀ \forall 全称量词,表示“对于所有的”“任意的”,如 ∀ x ∈ R , x 2 ≥ 0 \forall x \in R, x^2 \geq 0 xR,x20 表示对于任意实数 x x x x 2 x^2 x2 大于等于 0 0 0
\exists ∃ \exists 存在量词,表示“存在”,如 ∃ x ∈ R , x + 1 = 0 \exists x \in R, x + 1 = 0 xR,x+1=0 表示存在实数 x x x 使得 x + 1 = 0 x + 1 = 0 x+1=0
\not\subset ⊄ \not\subset 表示不包含于关系, A ⊄ B A \not\subset B AB 表示 A A A 不是 B B B 的子集。
\not< ≮ \not< <表示不小于关系,即大于或等于,如 a ≮ b a \not< b a<b 等价于 a ≥ b a \geq b ab
\not> ≯ \not> >表示不大于关系,即小于或等于,如 c ≯ d c \not> d c>d 等价于 c ≤ d c \leq d cd
\not= ≠ \not= =表示不等于关系,如 m ≠ n m \not= n m=n 表示 m m m n n n 不相等。
\vdash ⊢ \vdash 在逻辑推理和证明中,用于表示“推出”“演绎出”等含义,用来表示从一组前提可以推导出某个结论。例如, A ⊢ B A \vdash B AB 表示从命题 A A A 可以推出命题 B B B

(7).戴帽符号

输入显示描述
\hat{xy} x y ^ \hat{xy} xy^常用于表示对 x y xy xy 的某种估计或近似,在统计学中也可能表示样本均值等(具体含义根据上下文)。
\widehat{xyz} x y z ^ \widehat{xyz} xyz 一般用于表示对 x y z xyz xyz 所代表的对象(如函数、向量等)的估计或近似,在一些数学领域中用于特定的符号表示。
\bar{y} y ˉ \bar{y} yˉ常表示平均值,如 y ˉ \bar{y} yˉ 可以表示 y y y 的均值,也用于表示共轭等其他含义(根据上下文)。
\tilde{xy} x y ~ \tilde{xy} xy~在不同数学领域有不同用途,如在一些代数结构中表示特定的等价类或变形等。
\widetilde{xyz} x y z ~ \widetilde{xyz} xyz 类似于 x y z ^ \widehat{xyz} xyz ,但可能在不同的上下文中有特定的含义,常用于表示某种变形或推广后的对象。
\acute{y} y ˊ \acute{y} yˊ表示 y y y 的某种变化或特定的标记,在一些语言的音标表示中也用于表示重音等(在数学中较少见,根据具体情况)。
\breve{y} y ˘ \breve{y} y˘也是一种对 y y y 的标记符号,具体含义根据上下文而定,在一些数学符号体系中有特定用途。
\check{y} y ˇ \check{y} yˇ用于对 y y y 进行标记,在一些数学领域中表示特定的运算或关系后的结果。
\grave{y} y ˋ \grave{y} yˋ类似其他带标记的符号,对 y y y 进行特定的标识,具体含义取决于上下文。
\dot{x} x ˙ \dot{x} x˙常用于表示对 x x x 关于时间 t t t 的一阶导数,即 x ˙ = d x d t \dot{x} = \frac{dx}{dt} x˙=dtdx ,在物理学等领域常用。
\ddot{x} x ¨ \ddot{x} x¨表示对 x x x 关于时间 t t t 的二阶导数,即 x ¨ = d 2 x d t 2 \ddot{x} = \frac{d^2x}{dt^2} x¨=dt2d2x ,在物理学中用于描述加速度等。
\dddot{x}$\dddot{x}$表示对 x x x 关于时间 t t t 的三阶导数,即 $\dddot{x} = \frac{d^3x}{dt^3}$ ,在一些动力学问题中有应用。

十一、高亮公式

使用 \bbox[底色, (可选)边距, (可选)边框 border: 框宽度 框类型 框颜色] 命令来高亮一行公式。

边距及框宽度支持 绝对像素 px相对大小 em,框类型支持 实线 solid虚线 dashed

  • 例子:
$$\bbox[yellow]{e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n \qquad (1)}$$
  • 显示:
    在这里插入图片描述

十二、颜色

功能语法显示
字体颜色\color{色调}{表达式} x 2 \color{Blue}{x^2} x2
背景颜色\pagecolor{色调}{表达式}KaTeX parse error: Undefined control sequence: \pagecolor at position 1: \̲p̲a̲g̲e̲c̲o̲l̲o̲r̲{Gray}{\color{W…

(一)HTML4 与 CSS2 支持的颜色

颜色描述效果颜色描述效果
black黑色 t e x t \color{black}{text} textgrey灰色 t e x t \color{grey}{text} text
silver银色 t e x t \color{silver}{text} textwhite白色 t e x t \color{white}{text} text
maroon栗色 t e x t \color{maroon}{text} textred红色 t e x t \color{red}{text} text
yellow黄色 t e x t \color{yellow}{text} textlime酸橙色 t e x t \color{lime}{text} text
olive橄榄色 t e x t \color{olive}{text} textgreen绿色 t e x t \color{green}{text} text
teal水绿色 t e x t \color{teal}{text} textauqa宝石绿色 t e x t \color{auqa}{text} text
blue蓝色 t e x t \color{blue}{text} textnavy海军蓝 t e x t \color{navy}{text} text
purple紫色 t e x t \color{purple}{text} textfuchsia紫红色 t e x t \color{fuchsia}{text} text

(二)HTML5 与 CSS3 支持的颜色

语法效果
\color{#rgb}{text} t e x t \color{#00F}{text} text

例如:

  • #000 表示黑色
  • #00F 表示蓝色
  • #0F0 表示绿色
  • #0FF 表示青色
  • #F00 表示红色
  • #F0F 表示洋红色
  • #FF0 表示黄色
  • #FFF 表示白色

(三)其他支持的颜色

语法效果描述
\color{Apricot}{\text{Apricot}} Apricot \color{Apricot}{\text{Apricot}} Apricot橘子色
\color{Bittersweet}{\text{Bittersweet}} Bittersweet \color{Bittersweet}{\text{Bittersweet}} Bittersweet苦甜色
\color{Black}{\text{Black}} Black \color{Black}{\text{Black}} Black黑色
\color{Blue}{\text{Blue}} Blue \color{Blue}{\text{Blue}} Blue蓝色
\color{BlueGreen}{\text{BlueGreen}} BlueGreen \color{BlueGreen}{\text{BlueGreen}} BlueGreen蓝绿色
\color{BlueViolet}{\text{BlueViolet}} BlueViolet \color{BlueViolet}{\text{BlueViolet}} BlueViolet蓝紫罗兰色
\color{BrickRed}{\text{BrickRed}} BrickRed \color{BrickRed}{\text{BrickRed}} BrickRed砖红色
\color{Brown}{\text{Brown}} Brown \color{Brown}{\text{Brown}} Brown棕色
\color{BurntOrange}{\text{BurntOrange}} BurntOrange \color{BurntOrange}{\text{BurntOrange}} BurntOrange焦橙色
\color{CadetBlue}{\text{CadetBlue}} CadetBlue \color{CadetBlue}{\text{CadetBlue}} CadetBlue军校蓝
\color{CarnationPink}{\text{CarnationPink}} CarnationPink \color{CarnationPink}{\text{CarnationPink}} CarnationPink康乃馨粉色
\color{Cerulean}{\text{Cerulean}} Cerulean \color{Cerulean}{\text{Cerulean}} Cerulean天青色
\color{CornflowerBlue}{\text{CornflowerBlue}} CornflowerBlue \color{CornflowerBlue}{\text{CornflowerBlue}} CornflowerBlue矢车菊蓝色
\color{Cyan}{\text{Cyan}} Cyan \color{Cyan}{\text{Cyan}} Cyan青色
\color{Dandelion}{\text{Dandelion}} Dandelion \color{Dandelion}{\text{Dandelion}} Dandelion蒲公英黄色
\color{DarkOrchid}{\text{DarkOrchid}} DarkOrchid \color{DarkOrchid}{\text{DarkOrchid}} DarkOrchid深紫罗兰色
\color{Emerald}{\text{Emerald}} Emerald \color{Emerald}{\text{Emerald}} Emerald祖母绿
\color{ForestGreen}{\text{ForestGreen}} ForestGreen \color{ForestGreen}{\text{ForestGreen}} ForestGreen森林绿
\color{Fuchsia}{\text{Fuchsia}} Fuchsia \color{Fuchsia}{\text{Fuchsia}} Fuchsia紫红色
\color{Goldenrod}{\text{Goldenrod}} Goldenrod \color{Goldenrod}{\text{Goldenrod}} Goldenrod金菊黄
\color{Gray}{\text{Gray}} Gray \color{Gray}{\text{Gray}} Gray灰色
\color{Green}{\text{Green}} Green \color{Green}{\text{Green}} Green绿色
\color{GreenYellow}{\text{GreenYellow}} GreenYellow \color{GreenYellow}{\text{GreenYellow}} GreenYellow绿黄色
\color{JungleGreen}{\text{JungleGreen}} JungleGreen \color{JungleGreen}{\text{JungleGreen}} JungleGreen丛林绿
\color{Lavender}{\text{Lavender}} Lavender \color{Lavender}{\text{Lavender}} Lavender薰衣草色
\color{LimeGreen}{\text{LimeGreen}} LimeGreen \color{LimeGreen}{\text{LimeGreen}} LimeGreen酸橙绿
\color{Magenta}{\text{Magenta}} Magenta \color{Magenta}{\text{Magenta}} Magenta品红色
\color{Mahogany}{\text{Mahogany}} Mahogany \color{Mahogany}{\text{Mahogany}} Mahogany桃花心木色
\color{Maroon}{\text{Maroon}} Maroon \color{Maroon}{\text{Maroon}} Maroon栗色
\color{Melon}{\text{Melon}} Melon \color{Melon}{\text{Melon}} Melon蜜瓜色
\color{MidnightBlue}{\text{MidnightBlue}} MidnightBlue \color{MidnightBlue}{\text{MidnightBlue}} MidnightBlue午夜蓝
\color{Mulberry}{\text{Mulberry}} Mulberry \color{Mulberry}{\text{Mulberry}} Mulberry莓果色
\color{NavyBlue}{\text{NavyBlue}} NavyBlue \color{NavyBlue}{\text{NavyBlue}} NavyBlue海军蓝
\color{OliveGreen}{\text{OliveGreen}} OliveGreen \color{OliveGreen}{\text{OliveGreen}} OliveGreen橄榄绿
\color{Orange}{\text{Orange}} Orange \color{Orange}{\text{Orange}} Orange橙色
\color{OrangeRed}{\text{OrangeRed}} OrangeRed \color{OrangeRed}{\text{OrangeRed}} OrangeRed橙红色
\color{Orchid}{\text{Orchid}} Orchid \color{Orchid}{\text{Orchid}} Orchid兰花紫
\color{Peach}{\text{Peach}} Peach \color{Peach}{\text{Peach}} Peach桃色
\color{Periwinkle}{\text{Periwinkle}} Periwinkle \color{Periwinkle}{\text{Periwinkle}} Periwinkle士耳其蓝
\color{PineGreen}{\text{PineGreen}} PineGreen \color{PineGreen}{\text{PineGreen}} PineGreen松树绿
\color{Plum}{\text{Plum}} Plum \color{Plum}{\text{Plum}} Plum茄子紫
\color{ProcessBlue}{\text{ProcessBlue}} ProcessBlue \color{ProcessBlue}{\text{ProcessBlue}} ProcessBlue蓝色处理
\color{Purple}{\text{Purple}} Purple \color{Purple}{\text{Purple}} Purple紫色
\color{RawSienna}{\text{RawSienna}} RawSienna \color{RawSienna}{\text{RawSienna}} RawSienna生赭石色
\color{Red}{\text{Red}} Red \color{Red}{\text{Red}} Red红色
\color{RedOrange}{\text{RedOrange}} RedOrange \color{RedOrange}{\text{RedOrange}} RedOrange红橙色
\color{RedViolet}{\text{RedViolet}} RedViolet \color{RedViolet}{\text{RedViolet}} RedViolet红紫罗兰色
\color{Rhodamine}{\text{Rhodamine}} Rhodamine \color{Rhodamine}{\text{Rhodamine}} Rhodamine罗丹明色
\color{RoyalBlue}{\text{RoyalBlue}} RoyalBlue \color{RoyalBlue}{\text{RoyalBlue}} RoyalBlue皇家蓝
\color{RoyalPurple}{\text{RoyalPurple}} RoyalPurple \color{RoyalPurple}{\text{RoyalPurple}} RoyalPurple皇家紫
\color{RubineRed}{\text{RubineRed}} RubineRed \color{RubineRed}{\text{RubineRed}} RubineRed鲁比红
\color{Salmon}{\text{Salmon}} Salmon \color{Salmon}{\text{Salmon}} Salmon三文鱼色
\color{SeaGreen}{\text{SeaGreen}} SeaGreen \color{SeaGreen}{\text{SeaGreen}} SeaGreen海洋绿
\color{Sepia}{\text{Sepia}} Sepia \color{Sepia}{\text{Sepia}} Sepia赭石色
\color{SkyBlue}{\text{SkyBlue}} SkyBlue \color{SkyBlue}{\text{SkyBlue}} SkyBlue天空蓝
\color{SpringGreen}{\text{SpringGreen}} SpringGreen \color{SpringGreen}{\text{SpringGreen}} SpringGreen春季绿
\color{Tan}{\text{Tan}} Tan \color{Tan}{\text{Tan}} Tan褐色
\color{TealBlue}{\text{TealBlue}} TealBlue \color{TealBlue}{\text{TealBlue}} TealBlue青蓝色
\color{Thistle}{\text{Thistle}} Thistle \color{Thistle}{\text{Thistle}} Thistle蓟色
\color{Turquoise}{\text{Turquoise}} Turquoise \color{Turquoise}{\text{Turquoise}} Turquoise碧绿色
\color{Violet}{\text{Violet}} Violet \color{Violet}{\text{Violet}} Violet紫罗兰色
\color{VioletRed}{\text{VioletRed}} VioletRed \color{VioletRed}{\text{VioletRed}} VioletRed紫红色
\color{White}{\text{White}} White \color{White}{\text{White}} White白色
\color{WildStrawberry}{\text{WildStrawberry}} WildStrawberry \color{WildStrawberry}{\text{WildStrawberry}} WildStrawberry野生草莓色
\color{Yellow}{\text{Yellow}} Yellow \color{Yellow}{\text{Yellow}} Yellow黄色
\color{YellowGreen}{\text{YellowGreen}} YellowGreen \color{YellowGreen}{\text{YellowGreen}} YellowGreen黄绿色
\color{YellowOrange}{\text{YellowOrange}} YellowOrange \color{YellowOrange}{\text{YellowOrange}} YellowOrange黄橙色

部分颜色 KaTeX 中差异不明显。

维基百科的数学公式颜色语法

{\color{颜色}表达式}

作者实测:在部分浏览器中,上面的语法可能只将表达式的第一个字符着色,\color{颜色}{文字} 的语法才是所有字符全着色。例如:

{\color{Red}abc} 显示 a b c {\color{Red}a}bc abc

\color{Red}{abc} 显示 a b c \color{Red}{abc} abc

*注︰输入时第一个字母必需以大写输入,如 \color{OliveGreen}

例子

  • {\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1}

    x 2 + 2 x − 1 {\color{Blue}x^2}+{\color{Brown}2x} - {\color{OliveGreen}1} x2+2x1

  • x_{\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a}

    x 1 , 2 = − b ± b 2 − 4 a c 2 a x_{\color{Maroon}1,2}=\frac{-b\pm\sqrt{{\color{Maroon}b^2-4ac}}}{2a} x1,2=2ab±b24ac


via:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值