前缀和与差分

本文介绍了如何使用前缀和优化区间和计算,包括一维数组的前缀和求解区间和问题,以及二维数组的前缀和和差分方法,以O(1)的时间复杂度解决查询和修改操作。
摘要由CSDN通过智能技术生成

前缀和

  一个长度为n的数组a[0]-a[n-1],它的前缀和sum[i]等于a[0]-a[i]的和。例如,sum[0]=a[0],sum[1]=a[0]+a[1],sum[2]=a[0]+a[2],等等。
  利用递推,可以在O(n)时间内求得所有前缀和:sum[i]=sum[i-1]+a[i]。
  如果预计算出前缀和,就能利用它快速计算出数组中任意区间a[i]-a[j]的和,即a[i]+a[i+1]+…+a[j-1]+a[j]=sum[j]-sum[i-1]。
  这说明复杂度为O(n)的区间和计算优化到了O(1)的前缀和计算。
  前缀和的一个应用是差分,差分是前缀和的逆运算。

一维前缀和

问题描述

输入一个长度为 n的整数序列。
接下来再输入 m 个询问,每个询问输入一对 l,r。
对于每个询问,输出原序列中从第 l 个数到第 r 个数的和。

输入格式

第一行包含两个整数 n和 m。
第二行包含 n个整数,表示整数数列。
接下来 m行,每行包含两个整数 l 和 r,表示一个询问的区间范围。

输出格式

共 m行,每行输出一个询问的结果。

数据范围

1≤l≤r≤n,1≤n,m≤100000,−1000≤数列中元素的值≤1000

输入样例
5 3
2 1 3 6 4
1 2
1 3
2 4
输出样例
3
6
10

代码

#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int s[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        int x;
        cin>>x;
        s[i]=s[i-1]+x;
    }
    while(m--)
    {
        int l,r;
        cin>>l>>r;
        cout<<s[r]-s[l-1]<<endl;
    }
    return 0;
}

二维前缀和

问题描述

输入一个 n行 m列的整数矩阵,再输入 q个询问,每个询问包含四个整数 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。

输入格式

第一行包含三个整数 n,m,q。
接下来 n 行,每行包含 m个整数,表示整数矩阵。
接下来 q 行,每行包含四个整数 x1,y1,x2,y2,表示一组询问。

输出格式

共 q行,每行输出一个询问的结果。

数据范围

1≤n,m≤1000,1≤q≤200000,1≤x1≤x2≤n,1≤y1≤y2≤m,−1000≤矩阵内元素的值≤1000

输入样例
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例
17
27
21

问题分析

给出一个二维数组,在给出一个子数组的左上角坐标、右下角坐标,求出子数组中的所有元素的和。
用s[i,j]表示(1,1)~(i,j)的和。
在这里插入图片描述
先看看s[i,j]怎么求:

s[1,1] = a[1,1]

s[1,2] = a[1,1] + a[1,2]
       = s[1,1] + a[1,2]

s[1,3] = a[1,1] + a[1,2] + a[1,3] 
       = s[1,2] + a[1,3] 

s[2,1] = a[1,1] + a[2,1] 
       = s[1,1] + a[2,1] 

s[2,2] = a[1,1] + a[1,2] + a[2,1] +  a[2,2] 
       = s[1,2] + s[2,1] - s[1,1] + a[2, 2] 

s[2,3] = a[1,1] + a[1,2] + a[1,3] + a[2,1] + a[2,2] + a[2,3] 
       = s[1,3] + s[2,2] - s[1,2] + a[2, 3] 

可以得到一下公式:
s[i,j] = s[i−1,j]+ s[i,j−1]- s[i−1,j−1]+ a[i][j]
也就是,可以在O(n2)的时间复杂度内求出所有s
在这里插入图片描述
如图所示:黄色部分 = 紫色框 - 蓝色框 - 红色框 + 黑色框。
也就是: (x1,y1)~(x2,y2)的和 = s[x2,y2] - s[x1−1,y2] - s[x2,y1−1] + s[x1−1,y1−1]
所以当求出 s后,就能在 O(1)的时间复杂度内,求出子矩阵的和。
所以总时间复杂度是:O(n2)

代码

#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int s[N][N];
int main()
{
    int n,m,q;
    cin>>n>>m>>q;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            cin>>s[i][j];
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
    while(q--)
    {
        int x1,y1,x2,y2;
        cin>>x1>>y1>>x2>>y2;
        cout<<s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1][y1]<<endl;
    }
    return 0;
}

一维差分

问题描述

输入一个长度为 n的整数序列。
接下来输入 m个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c。
请你输出进行完所有操作后的序列。

输入格式

第一行包含两个整数 n和 m。
第二行包含 n个整数,表示整数序列。
接下来 m 行,每行包含三个整数 l,r,c,表示一个操作。

输出格式

共一行,包含 n个整数,表示最终序列。

数据范围

1≤n,m≤100000,1≤l≤r≤n,−1000≤c≤1000,−1000≤整数序列中元素的值≤1000

输入样例
6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1
输出样例
3 4 5 3 4 2

问题分析

类似于数学中的求导和积分,差分可以看成前缀和的逆运算。
差分数组:
首先给定一个原数组a:a[1], a[2], a[3], a[n];
然后我们构造一个数组b : b[1] ,b[2] , b[3], b[i];
使得 a[i] = b[1] + b[2 ]+ b[3] +, + b[i]
也就是说,a数组是b数组的前缀和数组,反过来我们把b数组叫做a数组的差分数组。换句话说,每一个a[i]都是b数组中从头开始的一段区间和。
考虑如何构造差分b数组?
最为直接的方法
如下:

a[0 ]= 0;
b[1] = a[1] - a[0];
b[2] = a[2] - a[1];
b[3] =a [3] - a[2];
........

b[n] = a[n] - a[n-1];

我们只要有b数组,通过前缀和运算,就可以在O(n) 的时间内得到a数组 。
给定区间[l ,r ],让我们把a数组中的[ l, r]区间中的每一个数都加上c,即 a[l] + c , a[l+1] + c , a[l+2] + c , a[r] + c;
暴力做法是for循环l到r区间,时间复杂度O(n),如果我们需要对原数组执行m次这样的操作,时间复杂度就会变成O(n*m)。有没有更高效的做法吗? 考虑差分做法。
始终要记得,a数组是b数组的前缀和数组,比如对b数组的b[i]的修改,会影响到a数组中从a[i]及往后的每一个数。
首先让差分b数组中的 b[l] + c ,a数组变成 a[l] + c ,a[l+1] + c, a[n] + c;
然后我们打个补丁,b[r+1] - c, a数组变成 a[r+1] - c,a[r+2] - c,a[n] - c;
为啥还要打个补丁?
看图理解一下这个公式的由来:
在这里插入图片描述
b[l] + c,效果使得a数组中 a[l]及以后的数都加上了c(红色部分),但我们只要求l到r区间加上c, 因此还需要执行 b[r+1] - c,让a数组中a[r+1]及往后的区间再减去c(绿色部分),这样对于a[r] 以后区间的数相当于没有发生改变。
因此我们得出一维差分结论:给a数组中的[ l, r]区间中的每一个数都加上c,只需对差分数组b做 b[l] + = c, b[r+1] - = c。时间复杂度为O(1), 大大提高了效率。

代码

#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int a[N],b[N];
int n,m;
void insert(int l,int r,int c)
{
    b[l]+=c;
    b[r+1]-=c;
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>a[i];
    for(int i=1;i<=n;i++) insert(i,i,a[i]);
    while(m--)
    {
        int l,r,c;
        cin>>l>>r>>c;
        insert(l,r,c);
    }
    for(int i=1;i<=n;i++) b[i]+=b[i-1];
    for(int i=1;i<=n;i++) cout<<b[i]<<" ";
    return 0;
}

二维差分

问题描述

输入一个 n行 m列的整数矩阵,再输入 q个操作,每个操作包含五个整数 x1,y1,x2,y2,c,其中 (x1,y1)和 (x2,y2)表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上 c。
请你将进行完所有操作后的矩阵输出。

输入格式

第一行包含整数 n,m,q。
接下来 n行,每行包含 m个整数,表示整数矩阵。
接下来 q 行,每行包含 5 个整数 x1,y1,x2,y2,c,表示一个操作。

输出格式

共 n行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。

数据范围

1≤n,m≤1000,1≤q≤100000,1≤x1≤x2≤n,1≤y1≤y2≤m,−1000≤c≤1000,−1000≤矩阵内元素的值≤1000

输入样例
3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1
输出样例
2 3 4 1
4 3 4 1
2 2 2 2

思路分析

  如果扩展到二维,我们需要让二维数组被选中的子矩阵中的每个元素的值加上c,是否也可以达到O(1)的时间复杂度。答案是可以的,考虑二维差分。
  a[ ][ ]数组是b[ ][ ]数组的前缀和数组,那么b[ ][ ]是a[ ][ ]的差分数组
  原数组: a[i][j]
  我们去构造差分数组: b[i][j]使得a数组中a[i][j]是b数组左上角(1,1)到右下角(i,j)所包围矩形元素的和。
  如何构造b数组呢?
  我们去逆向思考。
  同一维差分,我们构造二维差分数组目的是为了 让原二维数组a中所选中子矩阵中的每一个元素加上c的操作,可以由O(n*n)的时间复杂度优化成O(1)
  已知原数组a中被选中的子矩阵为 以(x1,y1)为左上角,以(x2,y2)为右下角所围成的矩形区域;
  始终要记得,a数组是b数组的前缀和数组,比如对b数组的b[i][j]的修改,会影响到a数组中从a[i][j]及往后的每一个数。
  假定我们已经构造好了b数组,类比一维差分,我们执行以下操作来使被选中的子矩阵中的每个元素的值加上c

b[x1][y1] += c;

b[x1,][y2+1] -= c;

b[x2+1][y1] -= c;

b[x2+1][y2+1] += c;

我们画个图去理解一下这个过程:
在这里插入图片描述
b[x1][ y1 ] +=c ; 对应图1 ,让整个a数组中蓝色矩形面积的元素都加上了c。
b[x1][y2+1]-=c ; 对应图2 ,让整个a数组中绿色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y1]- =c ; 对应图3 ,让整个a数组中紫色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y2+1]+=c; 对应图4,让整个a数组中红色矩形面积的元素再加上c,红色内的相当于被减了两次,再加上一次c,才能使其恢复。

代码

#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int a[N][N],b[N][N]; // 定义两个二维数组a和b,用于存储输入的矩阵和处理后的矩阵
int n,m,q; // 定义三个整数变量n、m和q,分别表示矩阵的行数、列数和操作次数

// 定义一个插入函数,用于在b矩阵中插入一个矩形区域,该区域的值为c
void insert(int x1,int y1,int x2,int y2,int c)
{
    b[x1][y1]+=c;
    b[x2+1][y1]-=c;
    b[x1][y2+1]-=c;
    b[x2+1][y2+1]+=c;
}

int main()
{
    cin>>n>>m>>q; // 输入矩阵的行数、列数和操作次数
    for(int i=1;i<=n;i++) // 遍历矩阵的每一行
        for(int j=1;j<=m;j++) // 遍历矩阵的每一列
            cin>>a[i][j]; // 输入矩阵的元素值
    for(int i=1;i<=n;i++) // 遍历矩阵的每一行
        for(int j=1;j<=m;j++) // 遍历矩阵的每一列
            insert(i,j,i,j,a[i][j]); // 将矩阵的元素值插入到b矩阵中
    while(q--) // 进行q次操作
    {
        int x1,y1,x2,y2,c; // 定义五个整数变量,分别表示操作的起始坐标和矩形区域的值
        cin>>x1>>y1>>x2>>y2>>c; // 输入操作的起始坐标和矩形区域的值
        insert(x1,y1,x2,y2,c); // 将矩形区域插入到b矩阵中
    }
    for(int i=1;i<=n;i++) // 遍历矩阵的每一行
        for(int j=1;j<=m;j++) // 遍历矩阵的每一列
            b[i][j]+=b[i-1][j]+b[i][j-1]-b[i-1][j-1]; // 更新b矩阵的值
    for(int i=1;i<=n;i++) // 遍历矩阵的每一行
    {
        for(int j=1;j<=m;j++) cout<<b[i][j]<<" "; // 输出b矩阵的元素值
        cout<<endl; // 换行
    }
    return 0;
}
  • 28
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值