六种三角函数关系

以下是六个三角函数(正弦、余弦、正切、余切、正割、余割)之间的核心关系总结,涵盖基本恒等式、倒数关系、平方关系和互余角关系:


一、基本定义关系


二、倒数关系


三、平方恒等式

  1. 基本平方和

    sin⁡2θ+cos⁡2θ=1sin2θ+cos2θ=1
  2. 正切与正割

    1+tan⁡2θ=sec⁡2θ(两边同乘cos⁡2θ)1+tan2θ=sec2θ(两边同乘cos2θ)
  3. 余切与余割

    1+cot⁡2θ=csc⁡2θ(两边同乘sin⁡2θ)1+cot2θ=csc2θ(两边同乘sin2θ)

四、互余角关系

当 α+β=π2α+β=2π​(互余)时:

sin⁡α=cos⁡β,cos⁡α=sin⁡βtan⁡α=cot⁡β,cot⁡α=tan⁡βsec⁡α=csc⁡β,csc⁡α=sec⁡βsinαtanαsecα​=cosβ,cosα=sinβ=cotβ,cotα=tanβ=cscβ,cscα=secβ​

简记:互余角的函数互换(sin ↔ cos,tan ↔ cot,sec ↔ csc)。


五、用单一函数表示其他函数

假设已知 sin⁡θ=xsinθ=x,则其他函数可表示为:

cos⁡θ=±1−x2tan⁡θ=x±1−x2cot⁡θ=±1−x2xsec⁡θ=1±1−x2csc⁡θ=1xcosθtanθcotθsecθcscθ​=±1−x2​=±1−x2​x​=x±1−x2​​=±1−x2​1​=x1​​

注意:符号由 θθ 所在象限决定。


六、几何意义(单位圆)

在单位圆中,点 P(x,y)P(x,y) 对应角 θθ:

x=cos⁡θ,y=sin⁡θ斜率=tan⁡θ=yx到x轴距离=sec⁡θ=1x到y轴距离=csc⁡θ=1yx斜率到x轴距离到y轴距离​=cosθ,y=sinθ=tanθ=xy​=secθ=x1​=cscθ=y1​​


七、常见应用场景

  1. 化简表达式:将复杂表达式转换为单一函数形式(如仅用 sin⁡θsinθ 表示)。

  2. 证明恒等式:通过平方恒等式或倒数关系逐步推导。

  3. 解三角方程:利用关系式统一变量后求解。


八、避坑指南

  1. 象限符号:平方根前的正负号需根据角所在象限确定。

  2. 分母为零:当 θ=π2+kπθ=2π​+kπ 时,tan⁡θtanθ 和 sec⁡θsecθ 无定义。

  3. 互余混淆:互余角关系仅适用于和为 90∘90∘ 的情况,不可随意扩展。


总结图示

嵌入式课程期末考试复习资料嵌入式系统的定义 答:1以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。 5.嵌入式处理器的分类 答:1嵌入式微处理器MPU 2嵌入式微控制器MCU 3 嵌入式DSP处理器 4嵌入式片上系统SOC 5 嵌入式可编程片上系统SOPC 4. ARM处理器有几种工作状态,各自的特点。工作状态之间如何进行转换,异常响应时,处理器处于何种状态。 答:ARM有两种工作状态: ①ARM状态,此时处理器执行32位的字对齐的ARM指令。 ②Thumb状态,此时处理器执行16位的、半字对齐的Thumb指令. 在程序的执行过程中,微处理器可以随时在两种工作状态之间切换,并且不影响处理器运行模式和相应寄存器中的内容。但ARM微处理器在上电或复位后,应该处于ARM状态。 执行BX跳转指令,将操作数的状态位(位0)设置为1时,可以使处理器从ARM状态切换到Thumb状态。此外,当处理器处于Thumb状态时发生异(如IRQ、FIQ、Undef、Abort、SWI等),则异常处理返回时,自动切换到Thumb状态。 将操作数的状态位(位0)设置为0时,可以使处理器从Thumb状态切换到ARM状态。此外,当处理器进行异常处理时,把PC指针放入异常模式链接寄存器中,并从异常向量地址开始执行程序,系统自动ARM状态。 THUMB指令集在功能上只是ARM指令集的一个子集,某些功能只能在ARM状态下执行,如CPSR和协处理器的访问. 进行异常响应时,处理器会自动进入ARM状态. 即使是一个单纯的THUMB应用系统,必须加一个汇编的交互头程序,因为系统总是自动从ARM开始启动
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值