三角函数及其之间的关系

正弦函数:sin x

余弦函数:cos x

正切函数:tan x

余切函数:cot x

正割函数:sec x       读音:[si:kent]

余割函数:csc x       读音:[keu'si:kent]

 

其中

tan x = sin x/cos x

cot x = cos x/sin x

sec x = 1 / cos x

csc x = 1 / sin x

 

 

 

同角三角函数间的基本关系式: 
·平方关系: 
sin^2(α)+cos^2(α)=1 
tan^2(α)+1=sec^2(α) 
cot^2(α)+1=csc^2(α) 
·商的关系: 
tanα=sinα/cosα 

cotα=cosα/sinα 


·倒数关系: 
tanα·cotα=1 
sinα·cscα=1 
cosα·secα=1 
三角函数恒等变形公式: 
·两角和与差的三角函数: 
cos(α+β)=cosα·cosβ-sinα·sinβ 
cos(α-β)=cosα·cosβ+sinα·sinβ 
sin(α±β)=sinα·cosβ±cosα·sinβ 
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) 
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 

·倍角公式: 
sin(2α)=2sinα·cosα 
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 
tan(2α)=2tanα/[1-tan^2(α)] 

·三倍角公式: 
sin3α=3sinα-4sin^3(α) 
cos3α=4cos^3(α)-3cosα 

·半角公式: 
sin^2(α/2)=(1-cosα)/2 
cos^2(α/2)=(1+cosα)/2 
tan^2(α/2)=(1-cosα)/(1+cosα) 
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 

·万能公式: 
sinα=2tan(α/2)/[1+tan^2(α/2)] 
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] 
tanα=2tan(α/2)/[1-tan^2(α/2)] 

·积化和差公式: 
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] 
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] 
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] 
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 

·和差化积公式: 
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] 
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] 
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] 
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数三角函数之间存在密切联系,可以视为彼此的逆运算。当给定一个角度时,可以通过对应的三角函数计算出比值;相反地,若已知某个边长比例,则可通过相应的反三角函数求得角度大小。 具体来说: 对于正弦函数 $y=\sin(x)$ 和反正弦函数 (也称为$\arcsin$) $x=\arcsin(y)$,其中$x$ 是以弧度为单位的角度而 $y$ 则是在区间 [-1, 1] 内的一个实数值。这两个函数满足条件 $\sin(\arcsin(y))=y$ 当且仅当 $-1 \leq y \leq 1$ 并且 $\arcsin(\sin(x))=x$ 当且仅当 $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$。 同样的逻辑适用于其他基本三角函数及其对应的反三角函数: - 对于余弦函数 $y=\cos(x)$ 和反余弦函数(即$\arccos$),有类似的限制范围。 - 对于正切函数 $y=\tan(x)$ 和反正切函数(即$\arctan$),也有特定的有效输入输出范围。 公式推导方面,考虑从直角三角形出发来理解这些关系。例如,在直角三角形中,假设有一个锐角 A,那么: - 如果知道斜边长度 c 和对边 a 的长度比率,就可以利用反正弦得到角A:$A = \arcsin(a/c)$; - 若给出邻边 b 跟斜边 c 的比率,则可以用反余弦找到角A:$A = \arccos(b/c)$; - 假设知道了对边a跟邻边b的比例,那么能够应用反正切确定角A:$A = \arctan(a/b)$。 此外还有复合公式的推导,比如半角公式、倍角公式等,它们连接了不同形式或者组合下的三角函数和反三角函数表达方式。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值