num=[1 1];
den = [2 1];
tf(num,den)
bode(tf(num,den));
hold on
tf :传递函数
tf(x,y):x是分子,y是分母
bode:伯特图
hold on:保持
以下是瞎编的,关于时域到频域以及频域的bode图的代码
% 定义符号变量t, s, T和n,其中t是时间变量,s是拉普拉斯变换的复频率变量
syms t s;
% 定义原函数y,它是一个关于时间t的函数,具有两个衰减的指数项
y = 1 - 2/3 * exp(-t) - 1/3 * exp(-4 * t);
% 计算原函数y的拉普拉斯变换,结果存储在LY中
% 拉普拉斯变换是数学上将时间域函数转换为复频域函数的一种方法
LY = laplace(y, t, s);
% 使用numden函数将拉普拉斯变换后的函数LY分解为分子h和分母k
[h, k] = numden(LY);
% 将符号表达式h和k转换为多项式形式,以便用于传递函数
a = sym2poly(h); % 分母多项式
b = sym2poly(k); % 分子多项式
% 使用tf函数创建传递函数G,分子为b,分母为a
G = tf(b, a);
% 创建一个1行5列的子图布局,并定位到第1个子图
subplot(1, 5, 1);
% 绘制传递函数G的Bode图,显示幅度和相位随频率变化的曲线
bode(G);
% 定位到子图布局的第2个子图
subplot(1, 5, 2);
% 绘制传递函数G的Nyquist图,用于分析系统的稳定性
nyquist(G);
% 计算拉普拉斯变换后的函数LY的逆拉普拉斯变换,结果存储在L_1中
% 逆拉普拉斯变换用于将复频域函数转换回时间域函数
L_1 = ilaplace(LY, s, t);
% 绘制原函数y的图像,定位到子图布局的第3个子图
subplot(1, 5, 3);
fplot(y); % 绘制原函数y的图像
title("原函数图像"); % 设置图像的标题
legend("原函数"); % 添加图例
% 绘制象函数LY的图像,定位到子图布局的第4个子图
subplot(1, 5, 4);
fplot(LY); % 绘制拉普拉斯变换后的象函数LY的图像
title("象函数图像"); % 设置图像的标题
legend("象函数"); % 添加图例
% 绘制逆拉普拉斯变换后的函数L_1的图像,定位到子图布局的第5个子图
subplot(1, 5, 5);
fplot(L_1); % 绘制逆拉普拉斯变换后的函数L_1的图像
title("函数图像"); % 设置图像的标题
legend("函数"); % 添加图例