MATLAB-bode图编程

num=[1 1];

den = [2 1];

tf(num,den)

bode(tf(num,den));

hold on

 

tf :传递函数

tf(x,y):x是分子,y是分母

bode:伯特图

hold on:保持

以下是瞎编的,关于时域到频域以及频域的bode图的代码

% 定义符号变量t, s, T和n,其中t是时间变量,s是拉普拉斯变换的复频率变量
syms t s;

% 定义原函数y,它是一个关于时间t的函数,具有两个衰减的指数项
y = 1 - 2/3 * exp(-t) - 1/3 * exp(-4 * t);

% 计算原函数y的拉普拉斯变换,结果存储在LY中
% 拉普拉斯变换是数学上将时间域函数转换为复频域函数的一种方法
LY = laplace(y, t, s);

% 使用numden函数将拉普拉斯变换后的函数LY分解为分子h和分母k
[h, k] = numden(LY);

% 将符号表达式h和k转换为多项式形式,以便用于传递函数
a = sym2poly(h); % 分母多项式
b = sym2poly(k); % 分子多项式

% 使用tf函数创建传递函数G,分子为b,分母为a
G = tf(b, a);

% 创建一个1行5列的子图布局,并定位到第1个子图
subplot(1, 5, 1);

% 绘制传递函数G的Bode图,显示幅度和相位随频率变化的曲线
bode(G);

% 定位到子图布局的第2个子图
subplot(1, 5, 2);

% 绘制传递函数G的Nyquist图,用于分析系统的稳定性
nyquist(G);

% 计算拉普拉斯变换后的函数LY的逆拉普拉斯变换,结果存储在L_1中
% 逆拉普拉斯变换用于将复频域函数转换回时间域函数
L_1 = ilaplace(LY, s, t);

% 绘制原函数y的图像,定位到子图布局的第3个子图
subplot(1, 5, 3);
fplot(y); % 绘制原函数y的图像
title("原函数图像"); % 设置图像的标题
legend("原函数"); % 添加图例

% 绘制象函数LY的图像,定位到子图布局的第4个子图
subplot(1, 5, 4);
fplot(LY); % 绘制拉普拉斯变换后的象函数LY的图像
title("象函数图像"); % 设置图像的标题
legend("象函数"); % 添加图例

% 绘制逆拉普拉斯变换后的函数L_1的图像,定位到子图布局的第5个子图
subplot(1, 5, 5);
fplot(L_1); % 绘制逆拉普拉斯变换后的函数L_1的图像
title("函数图像"); % 设置图像的标题
legend("函数"); % 添加图例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值