无线供电中继辅助通信网络(WPRCN)研究(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码、文章下载


💥1 概述

在环境感知应用中,信息新鲜度(Age of Information,AoI)被提出用于表征接收到的更新信息的新鲜度。本文研究了一种无线供电中继辅助通信网络(Wireless Powered Relay Aided Communication Network,WPRCN),其中,一个由混合接入点(Hybrid-Access Point,H-AP)无线供电的中继节点接收来自传感器的环境监测信息更新,并将其转发至 H-AP。由于决策的正确性依赖于中继及时上传的更新信息,因此本文研究了长期平均 AoI。无线供电中继分别采用解码转发(Decode-and-Forward,DF)或放大转发(Amplify-and-Forward,AF)协议,具体取决于能量因果性。同时,考虑到中继有限的能量存储,本文还考虑了解码成本对 DF 协议的影响。由于平均 AoI 的表达式并非初等函数,因此本文提出了一种基于泰勒近似的算法来求解其积分。为了在整个 WPRCN 中最小化平均 AoI,本文优化了中继的发射功率/等效平均功耗。仿真结果验证了理论分析的准确性,同时表明通过中继的功率分配方案可以优化 WPRCN 的平均 AoI。所提出的算法被证明具有很高的近似效果。

关键词:信息新鲜度(AoI),放大转发(AF),解码转发(DF),解码成本,中继,双跳,无线能量传输(WPT)。

I. 引言

通过专用射频(Radio Frequency,RF)信号实现的无线能量传输(Wireless Power Transfer,WPT)能够为大量部署的低功耗物联网(Internet of Everything,IoE)设备提供灵活、可控且按需的能量供应,以支持其感知、计算和通信功能 [1]。因此,它使得所谓的无线供电通信网络(Wireless Powered Communication Networks,WPCNs)得以实现 [2]。

到目前为止,人们已经为实现不同目标的 WPCNs 的优化设计投入了大量努力,例如吞吐量 [3]–[6]、能效 [7]、覆盖概率 [8]、分集增益 [9] 等。然而,在环境监测应用中,由于间歇性 WPT 导致的及时性问题却被忽略了。在这些特殊应用中,只有及时更新才能反映动态环境的真实状态,而过时的更新毫无意义,甚至具有误导性。此外,在一些对时间敏感的应用中,例如网络物理系统(Cyber–Physical System)的监测 [10],传统的通信延迟(即从更新生成到接收所经过的时间,由处理、排队、发送和传播引起)并不是衡量及时性的充分指标 [11]。当无电池设备由于能量供应不足而无法及时上传更新时,接收方也无法获得设备的当前状态。因此,信息新鲜度(AoI)被提出作为一种新的指标来表征上传更新的新鲜度 [12],[13]。具体来说,AoI 定义为自最新更新生成以来所经过的时间。

为了应对基于能量收集的通信系统中由于间歇性能量供应而产生的及时性挑战,AoI 吸引了许多研究投入 [11],[14]–[32]。一些最近的研究在单跳传输中保持了更新的新鲜度 [14]–[22]。具体来说,在考虑有限电池容量的情况下,文献 [14] 最小化了长期平均 AoI。此外,Bacinoglu 等人 [15] 实现了最低的时间平均“年龄惩罚”,该指标通过非递减惩罚函数衡量上传更新的及时性。文献 [16] 通过考虑非线性惩罚函数得到了平均峰值 AoI。Wu 等人 [17] 进一步在考虑不同电池容量的情况下,通过因果能量约束最小化了平均 AoI。Krikidis [18] 通过优化能量存储单元的容量最小化了平均 AoI。在给定固定信道功率增益的情况下,文献 [19] 提出了一种资源分配算法,以最小化基于能量收集的无线传感器网络(Wireless Sensor Network,WSN)中的平均 AoI。此外,还有一些相关工作关注接入控制 [20],[21] 和功率控制 [22]。

在多设备的 WPCNs 中,也研究了 AoI 性能 [23]–[26]。一些工作通过利用传统资源分配 [23] 或新兴的深度强化学习(Deep Reinforcement Learning,DRL)[24] 来最小化 WPCNs 的 AoI。在 [25] 中,在支持能量收集的数据生成控制系统中,保持 AoI 低于一定水平的同时最小化了能量中断概率。所提出的最优策略能够实现与传统以能量为导向的方案相当的能量中断概率。此外,Zheng 等人 [26] 在多个自私无线节点辅助的 WPCN 中最小化了 AoI,这需要即时反馈信道状态信息(Channel State Information,CSI)。

此外,AoI 还在通过 WPT 实现的双向数据交换系统 [11],[27] 和双跳能量收集辅助通信系统 [28]–[32] 中进行了研究。具体来说,Hu 和 Dong [11] 通过优化功率分割比和加权系数,分析并最小化了下行和上行通信之间的平均加权和 AoI。Dong 等人 [27] 进一步研究了在单个无线供电移动设备的雾计算系统中,下行和上行 AoI 之间的权衡。此外,Arafa 和 Ulukus [28] 研究了一个能量收集辅助的双跳通信系统中的 AoI,其中单个中继以半双工(Half-Duplex,HD)模式工作,其能量来自周围环境。这项工作进一步扩展到满足能量因果性和服务时间约束的 AoI 最小化问题 [29]。Zhou 等人 [30] 在满足能量约束的多设备能量收集基础的双跳系统中优化了实时数据的新鲜度。此外,在无线供电的协作网络中,通过分析中继电容器的容量,研究了峰值 AoI,其中由电站供电的中继分别采用解码转发(DF)和放大转发(AF)协议 [31]。然而,对于采用 DF 协议的中继,其解码成本并未被详细考虑。此外,在固定信息速率的情况下,文献 [32] 最小化了同时无线信息和能量传输(Simultaneous Wireless Information and Power Transfer,SWIPT)使能的协作通信系统中的平均 AoI。

不幸的是,现有工作 [11],[19],[26]–[32] 存在以下缺点:
1. 当混合接入点(H-AP)被用于下行 WPT 和上行更新接收时,没有分析和评估实际更新转发协议(如 AF 和 DF)的平均 AoI 性能。
2. 它们对能量消耗的量化过于简单。例如,它们仅假设从周围环境中收集的能量包用于单个信息更新。
3. 它们没有考虑更新解码的能量消耗,这对于能量存储有限的无线供电中继来说是至关重要的。
4. 平均 AoI 的数值计算通过块积分获得,计算复杂度很高,这与获得分析结果以实现快速计算的初衷相矛盾。

为了克服上述缺点,本文的创新贡献总结如下:
1. 本文研究了一种无线供电中继辅助通信网络(WPRCN),重点关注其长期平均 AoI 性能,其中采用 DF 或 AF 协议将传感器的及时更新转发至 H-AP。中继以频分双工(Frequency Division Duplex,FDD)模式工作,因此它可以同时从 H-AP 的下行传输中获取能量,并从传感器的上行传输中接收更新。
2. 当采用 DF 协议时,本文考虑了解码更新的能量消耗,这是由于能量供应有限。将不考虑解码成本的 WPRCN 视作基准,以展示其对平均 AoI 的影响。
3. 通过考虑中继的能量因果性和 H-AP 的成功传输概率,本文通过构建离散时间模型量化了平均 AoI,并以封闭形式得到了结果,这取决于中继的发射功率/等效平均功耗。通过基于误差控制的泰勒近似方法,将成功传输概率转化为初等函数,从而有效避免了传统的块积分。
4. 本文提出了一种离线设计,通过优化中继的发射功率/等效平均功耗来最小化每个传输块的平均 AoI。该设计不需要任何即时反馈。
5. 仿真结果验证了理论分析的准确性以及以平均 AoI 最小化为导向的设计的最优性。所提出的基于误差控制的泰勒近似方法被证明具有很高的准确性。根据平均 AoI 分析,在实际应用中应选择容量为 B∗(或根据实际电容器供应中最接近 B∗ 的容量)的电容器。此外,在能量供应充足的情况下,采用实际 DF 协议的中继的 AoI 性能优于采用 AF 协议的中继,而在中断

VII. 结论

本文通过考虑长期平均 AoI,研究了包含混合接入点(H-AP)、无线供电中继和传感器的无线供电中继辅助通信网络(WPRCN)的及时性。本文考虑了两种不同的中继协议,即放大转发(AF)和解码转发(DF),并研究了解码成本对采用实际 DF 协议的 AoI 性能的影响。本文提出了一种基于泰勒近似的算法,以提高对非初等函数的近似精度。通过分析和优化中继的发射功率/等效平均功耗,本文最小化了在不同转发协议下 WPRCN 每个传输块的平均 AoI。仿真结果验证了理论分析的准确性,同时证明了所提算法具有很高的近似效果。此外,本文还发现,在能量供应充足的情况下,采用实际 DF 协议的中继的 AoI 性能优于采用 AF 协议的中继,而在中断阈值较低的情况下,后者可能具有更好的性能。

详细文章第4部分下载。

📚2 运行结果

 

部分代码:

bar3(y)
xlabel('$d_2$ (m)', 'FontName', 'Times New Roman', 'FontSize', 12, 'interpreter','latex');
ylabel('$d_1$ (m)', 'FontName', 'Times New Roman', 'FontSize', 12, 'interpreter','latex');
zlabel('Average Age of Information per transmission block', 'FontName', 'Times New Roman', 'FontSize', 12);
set(gca,'XTick',1:1:size(y,1));
set(gca,'XTicklabel',{'7','8','9','10','11','12','13','14','15','16','17','18','19'});
set(gca,'YTick',1:1:size(y,2));
set(gca,'YTicklabel',{'7','8','9','10','11','12','13','14','15','16','17','18','19'});
print('../results/plotFig10a', '-dpdf')
%set (gcf,'windowstyle','normal'); 

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值