💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
参考文献:
基于关键场景辨别算法的两阶段鲁棒微网优化调度研究
本代码针对微电网的两阶段鲁棒优化调度问题提出了一种别出心裁的方法,与众不同地,它没有沿用大多数情况下应用的CC&G算法,而是采取了一项创新技术——关键场景辨别法。这一技术能够经过数轮迭代精准地锁定最不利的情境。面对光伏发电的不确定性和间断性问题,本代码利用了动态鲁棒优化技术进行有效处理。我们构建了一个考虑电价波动和光伏发电量不确定性的微网两阶段鲁棒优化调度模型,并运用恶劣场景辨别技术将挑战分解为主问题和子问题,采取迭代策略进行求解。子问题的职责是精确定位极其不利的光伏发电场景,而主问题则针对这种特定场景进行单层优化模型求解,这大幅减少了需要考虑的情景总数,有效提高了模型的计算效率。这一研究不仅展现了创新思维的重要性,也为微网优化调度领域带来了新的解决方案。
一、研究背景与意义
随着全球能源转型加速,微网在提升能源效率、促进可再生能源消纳方面发挥重要作用。然而,风力发电、光伏发电的间歇性与波动性,以及负荷需求的不确定性,使得传统确定性优化调度方法难以适应复杂运行环境。随机优化依赖概率分布信息,计算复杂度高;鲁棒优化虽能应对不确定性,但全场景考虑易导致保守性过强。关键场景辨别算法的引入,通过精准筛选对微网运行影响显著的关键场景,结合两阶段鲁棒优化模型,为解决经济性与鲁棒性矛盾提供了新方向。
二、两阶段鲁棒微网优化调度模型
-
第一阶段(确定性决策)
目标是最小化基础运行成本(发电成本、储能充放电成本等),确定分布式电源发电计划、储能充放电计划等基础调度方案,满足功率平衡与设备容量约束。此阶段不考虑不确定性具体实现,形成初始调度框架。 -
第二阶段(鲁棒性调整)
针对关键场景进行动态调整,决策变量包括分布式电源功率调整量、储能额外充放电量等,目标是最小化调整成本与惩罚成本(如停电损失),同时满足关键场景下的电压、线路容量等约束。通过两阶段协同,实现“基础经济性+极端鲁棒性”的平衡。
三、微网不确定性来源与建模方法
-
不确定性来源
- 可再生能源:风光出力受天气影响显著。
- 负荷需求:用户用电行为波动。
- 设备状态与市场因素:储能效率衰减、电价波动等。
-
建模方法
- 鲁棒不确定集:以区间或非线性集合描述不确定性边界,适用于保守性控制。
- 关键场景筛选:通过目标函数变化量评估场景影响,筛选差异超过阈值的场景。
- 动态调节参数:引入保守性调节系数,灵活平衡经济性与鲁棒性。
四、关键场景辨别算法原理与实现
-
算法定义
基于场景对运行目标(如成本、可靠性)的影响程度进行筛选,识别对系统最不利的“最恶劣场景”(如光伏出力最低、负荷峰值叠加等)。 -
实现流程
- 步骤1:生成初始场景集(如通过历史数据聚类或蒙特卡洛模拟)。
- 步骤2:计算各场景与基准场景的目标函数差异(如成本偏差率)。
- 步骤3:设定阈值(如20%),筛选差异显著的关键场景。
- 步骤4:主问题(基础调度)与子问题(场景辨别)迭代求解,动态更新关键场景集。
-
技术优势
- 计算效率:传统CCG算法需多次迭代全场景,而关键场景法仅需少量迭代(如3-5次),减少计算量50%以上。
- 鲁棒性保障:聚焦极端场景,避免因忽略高风险场景导致的调度失效。
五、两阶段模型构建方法
-
模型分解
采用列与约束生成(C&CG)算法,将原问题分解为主问题(确定基础调度)和子问题(辨识最恶劣场景),交替求解。例如: -
保守性控制
引入不确定性调节参数(如Γ),限制风光出力偏差范围,避免过度保守。例如: -
求解工具
常用MATLAB+CPLEX或Gurobi实现模型求解,结合强对偶理论将双层优化转为单层问题。
六、实际应用效果对比
-
案例研究
某光伏微网采用该方法后,运行成本降低12%-18%,供电可靠性提升至99.2%。与传统鲁棒优化相比,计算时间由120分钟缩短至45分钟。 -
性能指标
- 经济性:单位电量成本降低0.05元/kWh。
- 鲁棒性:极端场景下功率缺额减少60%。
- 计算效率:迭代次数由15次降至4次。
七、未来研究方向
- 多不确定性耦合建模:同时考虑风光、负荷、电价等多源不确定性。
- 动态阈值调整:根据实时数据自适应优化场景筛选阈值。
- 人工智能融合:结合深度学习预测关键场景,提升预判能力。
八、结论
基于关键场景辨别的两阶段鲁棒优化方法,通过精准筛选高风险场景、分阶段决策机制,有效平衡了微网运行的经济性与鲁棒性。其在降低计算复杂度、提升调度效率方面的优势,为高比例可再生能源接入下的微网优化提供了可靠解决方案。未来研究需进一步探索动态场景库构建与多目标协同优化,推动该方法在复杂能源系统中的应用。
📚2 运行结果
部分代码:
%导入50个光伏场景数据
Spv=xlsread('光伏数据','测试50场景4迭代','A1:AX24');
disp('读取50组光伏出力场景,结束!');
figure
plot(Spv)
grid
xlabel('时间/t');
ylabel('光伏出力/元');
title('总光伏场景')
%% 定义关键场景集合
j=[1];
P_MP=1;%定义初始值
P_SP=0;%定义初始值
k=0;%定义迭代次数
%设置程序大循环
while(P_MP>P_SP)
display(['迭代还未收敛,当前迭代第 ', num2str(k+1),' 次']);
P_RES=Spv(:,j)';
kk=length(j);
Obj_MP=zeros(kk,24);
P_MP=zeros(1,1);
P_DA=zeros(kk,24);
S_DA=zeros(kk,24);
u_GT=zeros(kk,24);
u_GTon=zeros(kk,24);
u_GToff=zeros(kk,24);
[Obj_MP,P_MP,P_DA,S_DA,u_GT,u_GTon,u_GToff]=Fun_MP(j,P_RES);
display(['第 ', num2str(k+1),' 次','求解主问题,结束!']);
P_MP=value(P_MP);
P_DA_SP=value(P_DA);
S_DA_SP=value(S_DA);
u_GT_SP=value(u_GT);
u_GTon_SP =value(u_GTon);
u_GToff_SP =value(u_GToff);
P_SP_b=[];%定义临时矩阵
%%%%%%%%%%求解子问题各光伏场景的P_SP%%%%%%%%%
%筛选出主问题中的光伏场景
j_SP=[];
for i=1:50 %这里根据场景数修改,1000场景则改为1000
if ismember(i,j)~=1
j_SP=[j_SP,i];
end
end
%定义子问题光伏索引
P_RES_SP=Spv(:,j_SP)';
[Obj_SP,Obj_SP_scene]=Fun_SP(j_SP,P_RES_SP,P_DA_SP,S_DA_SP,u_GT_SP,u_GTon_SP,u_GToff_SP);
display(['第 ', num2str(k+1),' 次','求解子问题,结束!']);
Obj_SP=value(Obj_SP) ;
Obj_SP_scene=value(Obj_SP_scene);
P_SP_b=Obj_SP_scene(1,:);
P_SP=min(P_SP_b);%求出P_SP_b矩阵中的最大值P_SP
%找出最大值P_SP对应的光伏场景
j_b=find(P_SP_b==P_SP);
j1=sort(j);%对主问题中的光伏场景排序
for ii=1:length(j1)
j1(ii)=j1(ii)-ii;
end
m=0;
for ii=1:length(j1)
if j_b>j1(ii)
m=m+1;
end
end
j=[j,j_b+m];%添加最大值P_SP对应的光伏场景
k=k+1;
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。