安装CUDA和cuDNN已及对应版本的torch方法整理

1.安装CUDA


1.查找你电脑的版本号,看对应的是哪个版本的CUDA

方法:

使用终端,win+R打开,输入:

nvidia-smi

这会显示你的GPU版本的信息

bbb262f867ea4d84849756118ebdbea3.png

 这里的意思是你的电脑适合12.1以下的版本的CUDA版本,注意千万不能下载高于你电脑适配版本的CUDA

2.我们直接在CUDA的官网里面下载我们需要的版本

edge里面搜https://developer.nvidia.com/cuda-toolkit

 打开官网(有时候会因为网速原因进去的慢或者进不去下,很正常,多试几次)

点击下载进入下载界面

72edce2fc14549a08170d31bca3be7a5.png

3.选择你需要的版本(我这里选择了V11.8版本)这里按照我的这样选,选在线安装包,这个比较小一点

a68b3f58bf6641ee83a181e11ea4efe9.png

 4.下载之后进入安装界面,别的都一样,注意我下图的这两项,在安装选项我们选择自定义

ba918f9433cf4a589f8e7f64c4bfd9cd.png

如果是第一次安装那就全选,如果是删除了之前的重新重新下载的只需要点第一项就好了,其余直接下一步下一步就OK了 (不要修改路径,不然可能会出现未知错误)

98d51200c56246caa4c98434f7ded323.png

 5.这里我们就算是安装上了CUDA但还没有配置好,接下来我们打开我们的系统的环境变量,来配置我们得环境变量

(1)在系统变量这里一般来说安装的时候会自动配置,没有的话就自己配置一下我框里面的两项(应该不改路径的话都是这个地址,你们根据自己的自行配置)

d922c126eb5f441e9f90ffdd8a4d4484.png

 (2)点开系统的环境变量里面,看有没有这五个,没有的话得自己加上

5173198aa25248db9bcc31f0d201ecd5.png

1. C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin

2.C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include

3.C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\lib

4.C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp

5.C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\CUPTI\lib64

这样我们就算是仅仅配置好了我们的CUDA


2.安装cuDNN

cuDnnD的官方网站:

cudnn官网,直接打开就行

由于是外网,所以打开都会很慢,基于你的网速原因,可以自行找一找加速器

(1)打开之后选择你的CUDA对应的版本号,注意比如我下载的是11版本的CUDA,那么我的cuDnn就选择11版本的就行

(2)下载下来压缩包解压,复制里面的前三个文件夹,直接粘贴到当时安装CUDA的路径的V18.0里面就好了。

cuDNN比较简单也不用配置环境变量,它就相当于是CUDA的一个插件一样。


这样我们的工作就算是完成了一半,接下来我们开始配置我们的pytorch


3.pytorch的安装和conda环境的配置


1.首先一定要记得,pytorch和CUDA以及python的版本是一一都是对应的,高了或低了都会出现错误

2.本文采用的是conda终端安装,不是在网站直接安装的,网站下载巨慢,大家有条件的可以自己试试。

1.conda环境的配置

打开我们的终端

这两个打开任意一个都可以,我们先配置一个新的虚拟环境,默认的是base。

我们使用这一句来创建一个新的虚拟环境

conda create --name myenv python=3.12
  • 在这个命令中,--name参数后面跟的是虚拟环境的名称,python=参数后面跟的是要安装的Python版本。可以根据需要替换这些参数。
  • 使用conda activate命令来激活虚拟环境。例如,要激活名为myenv的虚拟环
conda activate myenv
  • 激活成功后,可以在终端或命令行窗口中看到虚拟环境的名称出现在提示符前。此时,在该终端或命令行窗口中运行的Python程序将使用虚拟环境中的Python解释器和库。

  2.pytorch及相应工具的下载

我们这里要十分注意下载的时候一定要完全完全对应我们的版本,不然cuda是无法调用的,我们之前装的torch建议卸载掉,因为很可能是CPU版本的,这里有两种方法

(1)conda终端直接下载

这里我们要注意对应我们的CUDA版本,我这里选择了11.8版本,很慢但不建议使用清华或者淘宝等国内的镜像源,他们那个里面很可能是CPU版本,我们直接将torch,torchaudio,torchvision这三个库一次性下载下来。

conda install pytorch==2.5.0 torchvision==0.20.0 torchaudio==0.20.0 pytorch-cuda=11.8 -c pytorch -c nvidia

安装成功后我们在解释器运行以下代码检验一下

import torch
print(torch.__version__)
print(torch.cuda.is_available())

如果能够成功导入torch模块并且输出正确的版本号,且torch.cuda.is_available()返回True(如果安装了CUDA版本的话),则表示PyTorch已经成功安装。 

(2)官网直接下载

https://download.pytorch.org/whl/cu102

打开之后

我们这里要分别下载torch,torchaudio,torchvision这三个库

这里我解释一下。cu是你CUDA的版本号。cp是你的python的版本。你选择你需要的下载就好

我这里选择下载图中的第六个,你们可以选择自己下载

torchaudio,torchvision类似我这里就不一一演示,这两个版本不管,只需要对应你下载torch版本的cu号和cp号就可。一般来说版本要一一对应。

下载好之后我们直接在conda终端中安装就行,这里只需要注意要在你激活的那个虚拟环境中进行安装就好了。由于我是直接在conda终端安装的pytorch,所以我在这只是提供方法,你们自行打开安装,最后返回sucess就大功告成了

conda install F:\don\torch-2.5.0+cu118-cp312-cp312-win_amd64.whl
conda install F:\don\torchaudio-0.20.0+cu118-cp312-cp312-win_amd64.whl
conda install F:\don\torchvision-0.20.0+cu118-cp312-cp312-win_amd64.whl

这里输入的是你自己的下载下来的地址。

最后我们在PyCharm中验证一下我们配置好了没有

import sys
import torch
from torch.backends import cudnn
print(sys.version)
print(torch.__version__)
print(torch.cuda.is_available())
print(cudnn.is_available())

这里输出如下图所示就算我们配置好了

接下来我们就可以用我们的GPU来训练模型了。

4.运行报错处理

1.OMP错误

这里有一个十分快捷的方法

在所有代码前加

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

这一句的主要作用就是忽略这个错误,但是治标不治本,大家按需要选择

2.CUDA内存不足

我们加入以下代码:

import os
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True

这一句主要是来允许 PyTorch 的 CUDA 内存分配器使用可扩展段(expandable segments),这有助于减少内存碎片。

当输入以上代码CUDA还存在内存不足的问题,调整模型大小、减少批量大小等方法也可以解决问题。

再者就是直接在环境变量中配置以上两句代码,大家自行选择,我这里不做一一介绍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值