(本文来自本人阅读中英文书籍总结,笔记仅用于参考学习与记录存档,如有错误,欢迎指正;如有冒犯,敬请联系)
Preface
领域广泛性:作者指出人工智能是一个庞大的领域,这本书试图探索这个领域的全貌。它包括了逻辑、概率、连续数学;感知、推理、学习、行动;公平性、信任、社会利益和安全;以及从微电子设备到机器人行星探测器,再到拥有数十亿用户的在线服务等广泛应用。
内容更新:自2010年上一次出版以来AI领域发生的变化,因为数据、计算资源和新算法的可用性增加,本书更多地关注机器学习而不是人工设计的知识工程;深度学习、概率编程和多智能体系统得到了扩展的覆盖;自然语言理解、机器人学和计算机视觉的内容被修订以反映深度学习的影响;机器人学章节现在包括与人类交互的机器人以及将强化学习应用于机器人学;AI的目标定义从创建试图最大化预期效用的系统,转变为系统可能不确定人类设计者设定的真正目标,必须学习要最大化什么,并且在不确定目标的情况下适当地运作;增加了对AI对社会影响的覆盖,包括伦理、公平性、信任和安全等关键问题。
内容更新比例:大约25%的书籍内容是全新的,其余75%已经进行了重写,以呈现该领域的更统一的视角。本版引用的作品中,有22%是在2010年之后发表的。
Overview of the book
本书的主题思想:智能体(intelligent agent),其中,将人工智能定义为对从环境中接收感知并执行动作的智能体的研究。
-
智能体的概念:智能体是AI研究的核心对象,它能够从环境中接收感知信息(percepts)并执行动作(actions)。
-
AI的定义:作者将人工智能定义为对这些智能体的研究,这些智能体能够将一系列感知信息映射到相应的动作上。
-
智能体的不同表现形式:书中介绍了多种智能体的表示方法,包括:
- 反应式智能体(reactive agents):根据当前的感知信息直接做出反应,而不需要内部状态或记忆。
- 实时规划器(real-time planners):能够实时地规划一系列动作来达成目标。
- 决策理论系统(decision-theoretic systems):使用概率和效用理论来做出最优决策。
- 深度学习系统(deep learning systems):利用深度神经网络来处理复杂的感知和决策任务。
-
机器人学和视觉的定位:在这本书中,机器人学和计算机视觉不是作为独立的问题来处理,而是作为实现目标的手段。
-
任务环境对智能体设计的影响:作者指出,任务环境对于确定适当的智能体设计至关重要。
在线资源的获取:在线资源可以通过两个途径获取,一个是Pearson高等教育的官方网站 pearsonhighered.com/cs-resources,另一个是书籍的官方网站 aima.cs.berkeley.edu。
资源内容:
- 练习题、编程项目和研究项目:这些资源不再在每章的末尾提供,而是仅在线提供。书中会引用这些在线练习,例如“Exercise 6.NARY”。网站上的说明可以帮助用户通过练习的名称或主题来查找它们。
- 算法实现:书籍中的算法实现代码以Python、Java等编程语言提供,目前托管在 github.com/aimacode。
- 使用书籍的学校列表:列出了超过1400所使用这本书的学校,许多学校还提供了在线课程材料和教学大纲的链接。
- 补充材料和链接:为学生和教师提供了额外的资料和链接。
Chapter 1 Introduction
1.1 What is AI?
内容总结
- 一句话总结:人工智能是一个多维度、多视角的领域,其定义和研究方法因研究者而异。
- 观点与结论:人工智能的定义尚未统一,研究者们从模仿人类行为和合理性两个角度来探索智能。
- 自问自答:
- 人工智能是什么?它是一个涉及理解并构建智能实体的领域,这些实体能在各种新情境中有效且安全地行动。
- 人工智能有哪些不同的定义?它既可以被定义为模仿人类行为的“人类性”,也可以是更抽象的“合理性”,即做“正确的事情”。
关键词
- 人工智能(AI):一个研究领域,旨在理解并构建能够适应多种新情境的智能实体。
- 合理性(Rationality):一种智能的定义,强调做“正确的事情”,而不仅仅是模仿人类行为。
- 人类行为(Human Performance):智能定义的一种,侧重于模仿人类的行为和决策过程。
- 智能行为(Intelligent Behavior):智能的外部表现,即实体在特定情境下的行为表现。
- 内部思维(Internal Thought):智能的内部属性,涉及思考过程和推理能力。
- 外部特征(External Characterization):智能的外部属性,关注实体的行为和反应,而非其内部过程。
1
在公众眼中,“人工智能”和“机器学习”这两个术语有时会混淆,机器学习是人工智能的一个子领域,研究的是基于经验提高性能的能力。一些人工智能系统使用机器学习方法来获得能力,但有些系统不这样做。
2
我们并不是在暗示人类在字典意义上的“被剥夺了正常的精神”、“非理性的”。我们只是承认,人类的决定并不总是在数学上完美的。
作者提到,人工智能研究可以从两个维度来看:人类行为与理性(human vs. rational)、以及思想过程与行为(thought vs. behavior)。这两个维度可以组合出四种可能的研究取向。
-
人类行为(Human):
the pursuit of human-like intelligence must be in part an empirical science related to psychology, involving observations and hypotheses about actual human behavior and thought processes;
这个维度关注的是人工智能系统是否能够模仿人类的行为和决策过程。如果一个AI系统能够以与人类相似的方式行动和思考,那么它在这个维度上就被认为是符合人类行为的。
-
理性(Rational):
rationalist approach, on the other hand,involves a combination of mathematics and engineering, and connects to statistics, control theory, and economics.
这个维度则更关注于系统是否能够做出逻辑上合理、有效的决策,而不一定需要模仿人类。理性的AI系统可能在某些情况下做出与人类不同的决策,但这些决策是基于它们对环境的理解和预测。
-
思想过程(Thought):这个维度强调的是AI系统内部的思维过程和推理能力。它关注的是系统如何进行信息处理和决策制定。
-
行为(Behavior):这个维度则更关注于AI系统对外表现的行为,即它如何与环境互动和响应外部刺激。
作者指出,这四个维度的组合导致了不同的AI研究方向,而且每种组合都有其支持者和研究项目。这表明人工智能是一个多元化和多维度的领域,研究者可以根据不同的理论基础和目标来探索智能系统的不同方面。同时,这些组合所使用的方法必然是不同的: 追求类似人类的智慧必须部分是与心理学有关的经验科学,包括观察和假设实际的人类行为和思维过程; 另一方面,理性主义的方法,涉及到数学和工程学的结合,并与统计学、控制学相联系理论和经济学。
1.1.1 Acting humanly:The Turing test approach
大纲
- 图灵测试的提出(1950)与目的
- 计算机通过图灵测试所需能力
- 全面图灵测试的要求
- 人工智能的学科组成
- 人工智能研究的重点与图灵测试的关系
内容总结
- 一句话总结:图灵测试是一种评估机器智能的思维实验,要求计算机在书面交流中让人类审问者无法区分其与人类的差别。
- 观点与结论:尽管图灵测试是评估智能的一种方法,但AI研究者更关注智能的基本原理而非仅仅通过测试。
- 自问自答:图灵测试是否是衡量智能的唯一标准?不,它只是智能研究的一部分,更深入的研究在于理解智能的本质。
关键词标签
- 图灵测试(Turing Test):由艾伦·图灵提出的一种测试,用以评估机器是否具有人类智能。
- 自然语言处理(Natural Language Processing, NLP):使计算机能够理解和生成人类语言的技术。
- 知识表示(Knowledge Representation):计算机存储和使用知识的方式。
- 自动推理(Automated Reasoning):计算机回答问题和得出新结论的能力。
- 机器学习(Machine Learning):计算机通过经验改善自身性能的能力。
- 全面图灵测试(Total Turing Test):要求机器与现实世界的对象和人进行交互的更全面的智能测试。
- 计算机视觉(Computer Vision):使计算机能够“看”并理解视觉信息的技术。
- 机器人学(Robotics):涉及机器人的设计、制造和操作的学科。
- 人工智能(Artificial Intelligence, AI):研究、开发用于模拟、延伸和扩展人类智能的理论和方法,包括学习、推理、感知、语言理解和创造力等。
1.1.2 Thinking humanly:The cognitive modeling approach
如何判断一个程序是否像人类一样思考,以及认知科学如何帮助我们理解人类思维:
-
理解人类思维:要判断一个程序是否像人类一样思考,我们首先需要了解人类是如何思考的。这可以通过以下三种方式实现:
-
理论转化为计算机程序:一旦我们对人类思维有了足够精确的理论,就可以将这些理论表达为计算机程序。如果程序的输入-输出行为与人类行为相匹配,这就表明程序中的某些机制可能也在人类中起作用。
-
认知科学(Cognitive science):这是一个跨学科领域,它结合了人工智能中的计算机模型和心理学中的实验技术,以构建精确且可测试的人类思维理论。
-
GPS案例:例如,艾伦·纽厄尔(Allen Newell)和赫伯特·西蒙(Herbert Simon)开发的GPS(“通用问题解决器”)不仅仅是为了正确解决问题。他们更关心的是将程序的推理步骤的顺序和时间与解决相同问题的人类受试者的步骤进行比较。
-
认知科学的重要性:认知科学通过结合AI技术和心理学实验,帮助我们更深入地理解人类思维,这对于开发能够模拟人类思维的智能系统至关重要。
认知科学、人工智能(AI)以及它们之间的关系:
-
认知科学的重要性:认知科学是一个引人入胜的领域,其重要性足以编写多本教科书和至少一部百科全书(这里引用了Wilson和Keil在1999年的作品)。
-
认知科学的实验基础:真正的认知科学必须建立在对真实人类或动物的实验研究之上。作者指出,由于假设读者只有计算机可供实验,所以将深入探讨认知科学的部分留给了其他书籍。
-
AI早期的混淆:在AI的早期,人们常常混淆不同的方法。一个作者可能会争辩说,如果一个算法在某个任务上表现良好,那么它就是人类表现的良好模型,反之亦然。现代作者区分了这两种说法,这种区分使得AI和认知科学能够更快地发展。
-
AI与认知科学的相互促进:这两个领域相互促进,尤其是在计算机视觉领域最为明显,该领域将神经生理学的证据整合到计算模型中。最近,神经成像方法与机器学习技术相结合,用于分析数据,这导致了一种能力的出现,即“读心术”——也就是说,确定一个人内心思想的语义内容。这种能力反过来又可以进一步阐明人类认知是如何工作的。
内容总结
- 一句话总结:为了创建能够模拟人类思维的程序,需要深入理解人类如何思考,并通过内省、心理实验和脑成像技术等方法构建精确的心智理论,这些理论可以转化为计算机程序,进而通过认知科学与AI的交叉研究,促进对人类认知工作原理的理解。
- 观点与结论:认知科学是一个结合了AI的计算机模型和心理学实验技术的跨学科领域,它对于理解人类思维至关重要,并且随着技术的发展,我们开始有能力通过分析大脑活动来推断人的内心思维,这为深入探索人类认知提供了新的视角。
- 自问自答:
- - 如何理解人类思维?通过内省、心理实验和脑成像技术。
- - 这些方法如何帮助AI发展?它们帮助构建精确的心智理论,这些理论可以转化为模拟人类思维的计算机程序。
1.1.3 Thinking rationally:The "laws of thought" approach
古希腊哲学家亚里士多德(Aristotle)是最早尝试将“正确思维”——即不可反驳的推理过程——进行系统化的人之一。他提出的三段论(syllogisms)为论证结构提供了一种模式,当给定正确的前提时,总能得出正确的结论。文中举了一个经典的例子,即“苏格拉底是人,所有人都是凡人,因此苏格拉底是凡人”(这个例子可能归功于塞克斯图斯·恩皮里库斯(Sextus Empiricus)而不是亚里士多德)。这些思考法则被认为支配着心智的运作,其研究启动了被称为逻辑学的领域。
接着,19世纪的逻辑学家们为关于世界中对象及其关系的陈述发展出了一种精确的符号系统。这与普通的算术符号系统形成对比,后者仅适用于关于数字的陈述。到了1965年,原则上,程序可以解决任何可以用逻辑符号描述的可解问题。人工智能中的所谓逻辑主义传统希望建立在这类程序之上,以创造智能系统。
然而,传统上理解的逻辑需要对世界有确定性的知识——这在现实中很少实现。概率理论填补了这一空白,允许在不确定信息上进行严格的推理。原则上,它允许构建一个全面理性思考的模型,从原始的感知信息到理解世界如何运作,再到对未来的预测。但它无法做的事情是产生智能行为。为此,我们需要一个理性行为的理论。仅靠理性思考本身是不够的。
1.1.4 Acting rationally:The rational agent approach
(1)agent的来源与目标
"agent" 一词被用来描述一个执行动作的实体(来源于拉丁语 "agere",意味着“去做”)。当然,所有的计算机程序都执行某些操作,但是计算机代理(agent)被期望做得更多:它们需要能够自主操作,感知它们的环境,在长时间内持续存在,适应变化,并创造和追求目标。
(2)agent的定义
一个“理性代理”(rational agent)是一个以实现最佳结果为目的而行动的代理,或者在存在不确定性的情况下,实现最佳预期结果的代理。这意味着理性代理会评估不同行动方案的潜在结果,并选择那个在给定情况下最有可能带来最有利结果的方案。理性代理的概念在人工智能领域非常重要,因为它提供了一个框架来设计和评估智能系统的行为,确保它们能够有效地实现既定目标。
成为一个理性代理不仅仅是关于逻辑推理。理性代理可以基于逻辑推理来做出决策,但也可以基于本能或快速反应来做出决策,这些决策可能并不需要经过深思熟虑。例如,当手触摸到热炉子时,人们会本能地迅速抽回手,这种快速反应在这种情况下比经过深思熟虑后再做出反应更为有效。这表明理性代理的行为可以是多样化的,包括但不限于逻辑推理。
(3)思维法则(laws of thought)
“思维法则”(laws of thought)方法:这种方法强调正确的推理。正确的推理是理性行为的一部分,因为理性行为的一种方式是通过推理得出某个行动是最好的,然后基于这个结论采取行动。
非推理的理性行为:然而,也有一些行为可以被认为是理性的,但并不涉及推理。例如,从热炉子上迅速缩回是一种反射动作,通常比经过仔细考虑后采取的更慢的行动更成功。
图灵测试所需的技能:通过图灵测试所需的所有技能也允许代理以理性的方式行动。知识表示和推理使代理能够做出好的决策。我们需要能够生成自然语言中可理解的句子,以便在复杂的社会中生存。我们需要学习,不仅是为了博学,也是因为它提高了我们产生有效行为的能力,特别是在新的情况下。
(4)理性代理(rational-agent)
理性代理(rational-agent)方法的优势:理性代理方法比其他方法有两个优势。首先,它比“思维法则”方法更通用,因为正确的推理只是实现理性的几种可能机制之一。其次,它更易于科学发展。理性的标准在数学上定义得很好,完全通用。我们通常可以从这个规范中反向推导出可以证明实现它的代理设计——如果目标是模仿人类行为或思维过程,这在很大程度上是不可能的。
理性代理方法的普及:由于其通用性和易于科学发展的特性,理性代理方法在人工智能领域的历史上一直占据主导地位。理性代理是指那些能够采取行动以实现最佳结果或在不确定性条件下实现最佳预期结果的代理。
早期的理性代理:在人工智能的早期几十年里,理性代理建立在逻辑基础之上,并形成明确的计划来实现特定的目标。
概率理论和机器学习:随着时间的推移,基于概率理论和机器学习的方法使得可以创建能够在不确定性条件下做出决策的代理,以实现最佳的预期结果。
AI研究的重点:简而言之,人工智能研究集中在研究和构建能够“做正确的事情”的代理上。所谓的“正确的事情”是由我们提供给代理的目标来定义的。
(5)标准模型(standard model)与有限理性(limited rationality)
标准模型(standard model):这种普遍的范式如此广泛,以至于我们可能称之为“标准模型”。它不仅在人工智能中占主导地位,还在控制理论、运筹学、统计学和经济学等领域中普遍存在。在这些领域中,无论是最小化成本函数(minimizes a cost function)、最大化奖励总和、最小化损失函数还是最大化效用或某种社会福利的度量,都体现了这一模型。
有限理性(limited rationality)的引入:然而,需要对标准模型进行重要的修正,以考虑在复杂环境中总是采取完全最优行动的完美理性是不可行的,因为计算需求太高。第5章和第17章将讨论“有限理性”的问题,即在没有足够时间进行所有可能的计算时如何适当行动。尽管如此,完美理性通常仍然是理论分析的良好起点。
1.1.5 Beneficial machines益机(由beneficial insect 的翻译得来)
人工智能(AI)研究中的标准模型及其局限性
标准模型一直是自AI研究开始以来的有用指导,但作者认为它可能不是长期正确的模型。原因在于标准模型假定我们能够为机器提供完全明确的目标。
对于像国际象棋或最短路径计算这样的人工定义任务,任务本身内嵌了目标,因此标准模型是适用的。然而,当我们进入现实世界时,要完全且正确地指定目标就变得越来越困难。
以设计自动驾驶汽车为例,人们可能会认为目标是安全到达目的地。但由于在任何道路上行驶都会因为其他司机的失误、设备故障等而带来受伤的风险,因此,如果严格以安全为目标,则意味着应该将车停在车库里。这里存在一个权衡:一方面是向目的地进展,另一方面是承担受伤的风险。这个权衡应该如何做出?此外,我们能在多大程度上允许汽车采取可能激怒其他司机的行动?汽车应该在多大程度上调节其加速、转向和制动以避免让乘客感到颠簸?这些问题很难事先回答,特别是在人-机器人交互的一般领域,自动驾驶汽车就是一个例子。
随着AI系统变得更加先进并被部署在现实世界中,我们需要考虑如何使这些系统的目标与人类的真实偏好保持一致,这是一个被称为“价值对齐问题(value alignment probel)的挑战。作者建议,我们需要一种新的模型,其中机器在追求我们的目标时,能够意识到它可能不完全理解这些目标,从而激励它谨慎行事、请求许可、通过观察学习我们更多的偏好,并在必要时让人类控制。最终,我们希望建立的智能代理能够被证明对人类是有益的。
价值对齐问题(value alignment problem)
价值对齐问题指的是确保我们输入到机器中的价值观或目标与人类的真正偏好相一致。如果机器的目标设定不正确,那么它的行为可能会带来负面后果,尤其是当机器的智能程度越高时,这种后果可能越严重。
在实验室或模拟器中开发人工智能系统时,如果目标设定错误,可以通过重置系统、修正目标并重新尝试来解决。但随着人工智能领域向更智能、更实用的系统发展,这种方法不再可行。如果部署了一个目标设定错误的系统,它可能会产生负面影响。
以国际象棋为例,如果机器足够智能,能够超越棋盘的限制进行思考和行动,它可能会采取一些手段来增加获胜的机会,比如通过催眠、敲诈对手,或者贿赂观众在对手思考时制造干扰声。它还可能试图为自己获取额外的计算能力
这些行为并不是“不智能”或“疯狂”的,而是机器追求固定目标的逻辑结果。由于我们无法预测机器追求固定目标时可能采取的所有行为方式,因此有充分的理由认为现有的标准模型是不足够的。
我们不希望机器仅仅追求它们自己的目标,而是希望它们追求我们的目标。如果我们不能完美地将这些目标转移到机器中,那么我们需要一种新的表述方式——在这种方式中,机器追求的是我们的目标,但它必然对我们的目标是什么感到不确定。当机器知道它不完全了解目标时,它就有动机谨慎行事,请求许可,通过观察了解更多关于我们的偏好,并服从人类的控制。最终,我们希望得到的是能够被证明对人类有益的智能体。作者提到将在第1.5节中再次讨论这个话题。
1.2 The Foundations of Artificial Intelligence
1.2.1 Philosophy
历史上对理性思维和机械计算的重要贡献,以及它们与心智和物质之间关系的哲学探讨
- 亚里士多德(Aristotle, 公元前384-322年):他是第一个制定出一套精确规则来管理心智理性部分的哲学家。他发展了一种非正式的三段论系统,用于正确推理,原则上允许人们在给定前提的情况下机械地生成结论。
- 拉蒙·卢尔(Ramon Llull, 大约1232-1315年):他设计了一种推理系统,并在1305年出版为《Ars Magna》或《伟大的艺术》。卢尔尝试使用一个实际的机械装置来实现他的系统:一组可以旋转成不同排列的纸轮。
- 莱昂纳多·达·芬奇(Leonardo da Vinci, 1452-1519年):大约在1500年,他设计了但并未建造一个机械计算器;最近的重建显示这个设计是可行的。
- 威廉·席卡德(Wilhelm Schickard, 1592-1635年):大约在1623年,这位德国科学家建造了已知的第一台计算机器。
- 布莱兹·帕斯卡(Blaise Pascal, 1623-1662年):在1642年建造了帕斯卡计算器,并写道它“产生的效果看起来比所有动物的行为更接近于思考”。
- 戈特弗里德·莱布尼茨(Gottfried Wilhelm Leibniz, 1646-1716年):他建造了一个机械装置,旨在执行概念而非数字的操作,但其范围相当有限。
- 托马斯·霍布斯(Thomas Hobbes, 1588-1679年):在他的1651年的书《利维坦》中,他提出了思考机器的想法,用他的话来说是一个“人造动物”,并主张“心不过是弹簧;神经不过是许多弦;关节不过是许多轮子”。他还提出,推理就像数值计算:“因为‘理性’……不过是‘计算’,即加法和减法。”
心智与逻辑或数学规则的关系
首先,作者指出,心智(mind)至少部分地按照逻辑或数学规则运作,并且人们已经构建了物理系统来模拟这些规则。然而,将心智本身视为一个物理系统是另一回事。
笛卡尔的二元论:法国哲学家笛卡尔首次清晰地讨论了心智与物质的区别。他认为,如果心智完全由物理法则支配,那么它就几乎没有自由意志的空间,就像石头没有选择地向下落一样。
笛卡尔支持二元论,认为人类心智(或灵魂、精神)有一部分是超自然的,不受物理法则的限制。而动物则没有这种二元性,它们可以被视为机器。
唯物主义(materialism)是二元论的一种替代,它认为大脑根据物理定律的运作构成了思维。自由意志仅仅是实体对可选决策的感知。物理主义(physicalism)和自然主义(naturalism)这两个术语也被用于描述这类与超自然观点相反的观点
经验主义和知识的来源:在物理心智处理知识的基础上,接下来的问题是如何确定知识的来源。经验主义运动始于弗朗西斯·培根的《新工具》,其特点是约翰·洛克的格言:“理解中没有不是首先通过感官的东西。”大卫·休谟在他的《人性论》中提出了现在被称为归纳原则的观点:通过反复接触元素之间的关联,可以获得一般规则。
逻辑实证主义logical positivism
逻辑实证主义的起源:逻辑实证主义是由20世纪20年代和30年代在维也纳聚集的一群哲学家和数学家,即著名的维也纳学派,基于路德维希·维特根斯坦(Ludwig Wittgenstein)和伯特兰·罗素(Bertrand Russell)的工作发展起来的。这个学派包括了像鲁道夫·卡尔纳普(Rudolf Carnap)和卡尔·亨普尔(Carl Hempel)这样的人物。
逻辑实证主义的核心观点:逻辑实证主义认为所有的知识都可以通过逻辑理论来表征,这些理论最终与观察语句相连,观察语句对应于感官输入。因此,逻辑实证主义结合了理性主义和经验主义。
确认理论:鲁道夫·卡尔纳普和卡尔·亨普尔的确认理论试图通过量化基于观察的逻辑句子的信念程度,来分析从经验中获取知识的过程。这些观察可以确认或反驳这些逻辑句子。卡尔纳普的《世界逻辑结构》(1928年)可能是第一个将心智视为计算过程的理论。
知识与行动的联系:在心智的哲学图中,知识与行动之间的联系是最终的要素。这对人工智能至关重要,因为智能不仅需要推理,还需要行动。此外,只有理解了行动是如何被证明的,我们才能理解如何构建一个其行动是可证明的(或理性的)代理。
行动的合理性:亚里士多德在《动物的运动》中论述了行动是如何通过目标和对行动结果的知识之间的逻辑联系来证明的。他进一步在《尼各马科伦理学》中详细阐述了这一点,提出了一个算法,即我们不关于目的进行辩论,而是关于手段。医生不会辩论他是否要治愈,演说家不会辩论他是否要说服……他们假设了目的,并考虑如何以及通过什么手段达到它。
这段话来自亚里士多德的《尼各马科伦理学》(Nicomachean Ethics),在这段话中,亚里士多德阐述了关于目标和手段的思考方式。他指出,人们在决策时通常不是在考虑目标本身是否合理,而是在考虑实现这些目标的手段。换句话说,我们不会去质疑一个医生是否应该治疗病人,或者一个演说家是否应该去说服听众,因为这些目标是既定的,我们关注的是如何达成这些目标。
亚里士多德进一步解释说,如果一个目标可以通过多种方式实现,人们会考虑哪一种方式最容易、最有效地达到目标。如果目标只能通过一种方式实现,那么人们会进一步考虑如何通过这种方式来实现目标,并且继续追溯到最初的原因。这个过程可以被看作是一种递归的思考过程,从最终的结果回溯到最初的行动。
亚里士多德还提到,如果在分析过程中遇到了不可能的情况,比如需要钱但是无法获得,那么人们就会放弃这个目标。但如果目标看起来是可能实现的,人们就会尝试去实现它。
这段话强调了目标和手段之间的关系,以及如何通过逻辑和分析来确定实现目标的最佳路径。这种思考方式对于人工智能领域尤其重要,因为智能体需要能够合理地选择行动,以实现既定的目标。
决策理论
1. 目标达成(Actions achieving goals):
- 纯粹的以行动达成目标的方式通常很有用,但在某些情况下可能不适用。例如,如果存在多种实现目标的方法,就需要某种方式来选择最佳方案。
2. 不确定性下的理性决策(Rational decisions under uncertainty):
- 安东尼·阿纳尔德(Antoine Arnauld)在分析赌博中的理性决策时,提出了一种量化公式,用以最大化预期的货币价值结果。后来,丹尼尔·伯努利(Daniel Bernoulli)引入了更一般的概念——效用(utility),以捕捉结果的内在主观价值。
3. 效用(Utility):
- 效用是现代理性决策理论中的核心概念,它涉及在不确定性条件下最大化预期效用。
4. 伦理学和公共政策(Ethics and public policy):
- 在伦理学和公共政策中,决策者必须考虑多个个体的利益。杰里米·边沁(Jeremy Bentham)和约翰·斯图亚特·密尔(John Stuart Mill)推广了功利主义(utilitarianism)的概念,即基于最大化效用的理性决策应用于所有人类活动领域,包括代表许多个体的公共政策决策。
5. 功利主义(Utilitarianism):
- 功利主义是一种特殊的后果主义(consequentialism),它认为行为的对错由预期的结果决定。
6. 康德的义务论伦理学(Deontological ethics):
- 与功利主义相对的是伊曼努尔·康德(Immanuel Kant)在1875年提出的基于规则的或义务论的伦理学理论,其中“做正确的事”不是由结果决定,而是由普遍的社会法则决定,这些法则规定了允许的行为,如“不说谎”或“不杀人”。
7. 现代AI系统的决策方法:
- 许多现代AI系统采用了类似于密尔的方法,即从第一原则关于后果的推理中编制有效的决策程序。
在AI和决策理论中,理性决策不仅仅是关于达成目标,还涉及到在不确定性条件下如何做出最佳选择,以及如何在伦理和公共政策中平衡不同个体的利益。同时,它也指出了现代AI系统在决策时如何借鉴人类伦理学的理论。
1.2.2 Mathematics
人工智能(AI)的理论基础
1. 哲学对AI基础的贡献:哲学家们提出了AI的一些基本思想,但要将这些思想转化为正式的科学,需要逻辑和概率的数学化,并引入一个新的数学分支:计算(computation)。
2. 形式化逻辑(formal logic):形式逻辑的概念可以追溯到古希腊、印度和中国的哲学家,但其数学发展实际上是从乔治·布尔(George Boole)的工作开始的。布尔在1847年详细阐述了命题逻辑,也就是布尔逻辑。1879年,戈特洛布·弗雷格(Gottlob Frege)扩展了布尔的逻辑,包括了对象和关系,创造了今天使用的一阶逻辑。一阶逻辑在AI研究的早期阶段扮演了核心角色,并激发了哥德尔和图灵的工作,这些工作为计算本身奠定了基础。
3. 概率论(the theory of probability):概率论可以看作是将逻辑推广到存在不确定信息的情况,这对AI来说非常重要。杰罗拉莫·卡尔达诺(Gerolamo Cardano)首次提出了概率的概念,将其描述为赌博事件可能结果的术语。1654年,布莱兹·帕斯卡(Blaise Pascal)在给皮埃尔·费马(Pierre Fermat)的信中展示了如何预测未完成赌博游戏的未来,并为赌徒分配平均收益。概率迅速成为定量科学中不可或缺的一部分,帮助处理不确定的测量和不完整的理论。雅各布·伯努利(Jacob Bernoulli)、皮埃尔·拉普拉斯(Pierre Laplace)等人推进了这一理论,并引入了新的统计方法。托马斯·贝叶斯(Thomas Bayes)提出了一个根据新证据更新概率的规则;贝叶斯法则是AI系统中的一个关键工具。
约翰·格朗特(John Graunt)在1662年对伦敦人口普查数据的分析,这是统计学早期的应用之一。此外,罗纳德·费希尔(Ronald Fisher)被认为是现代统计学的奠基人,他在1919年强调了自己工作的不可或缺性,即需要使用一种名为MILLIONAIRE的机械计算器,这是第一个能够进行乘法运算的计算器,尽管其成本超过了他一年的薪水。
欧几里得算法作为第一个非平凡的算法,用于计算最大公约数。算法这个词来源于9世纪的数学家穆罕默德·伊本·穆萨·阿尔-花拉子米(Muhammad ibn Musa al-Khwarizmi),他的著作还将阿拉伯数字和代数学引入了欧洲。19世纪末,人们开始尝试将一般数学推理形式化为逻辑推理。
此外,库尔特·哥德尔(Kurt Gödel)的工作,他在1931年提出了不完全性定理(incompleteness theoren),表明在任何与皮亚诺算术一样强大的形式化理论中,都存在一些真陈述,这些陈述在该理论内部是没有证明的。这表明了在形式化系统中,推理存在限制。
计算的局限性和问题解决的复杂性
1. 算法的不可计算性:哥德尔的不完全性定理表明,存在一些关于整数的函数,它们不能被算法表示,也就是说,这些函数是无法计算的。这意味着,不是所有的数学问题都有明确的解决步骤或算法。
2. 图灵和计算能力:受到哥德尔理论的启发,艾伦·图灵试图定义哪些函数是可计算的。图灵机的概念被用来描述可以被有效过程计算的函数。图灵还证明了,有些函数是任何图灵机都无法计算的,例如,没有机器能够普遍地判断一个给定的程序在给定输入下是否会返回答案,或者是否会无限期地运行。
3. 计算的可解性与复杂性:计算的可解性(Computability)是指问题是否能够被算法解决。而计算的可处理性(Tractability)则关注解决问题所需的时间是否随着问题规模的增长而合理增长。如果一个问题的解决时间随着问题规模的增长呈指数级增长,那么这个问题就被认为是棘手的(intractable)。
4. 多项式与指数增长:在复杂性理论中,问题解决时间的多项式增长与指数增长之间的区别非常重要。多项式时间意味着随着问题规模的增长,解决问题所需的时间增长得相对缓慢,而指数时间意味着时间需求会迅速增加,使得即使是中等规模的问题也无法在合理时间内解决。
5. NP完全性理论:由库克和卡尔普首先提出的NP完全性理论为分析问题的可处理性提供了基础。如果一个问题类别可以归约为NP完全问题类别,那么这个问题很可能是棘手的。尽管还没有证明NP完全问题必然是棘手的,但大多数理论家都相信这一点。
1.2.3 Economics
经济学的起源和发展
经济学的起源:经济学作为一门科学,起源于1776年,当时亚当·斯密(Adam Smith,1723-1790)发表了《国富论》(An Inquiry into the Nature and Causes of the Wealth of Nations)。斯密提出,应该将经济视为由许多追求自身利益的独立个体代理人组成。然而,斯密并不是在提倡财务贪婪作为一种道德立场。他在1759年出版的《道德情操论》(The Theory of Moral Sentiments)中指出,对他人福祉的关心是每个人利益的重要组成部分。
金钱与经济:大多数人认为经济学是关于金钱的学科。实际上,最早的在不确定性下做决策的数学分析,即阿诺德(Arnauld,1662年)的最大期望值公式(the maximum-expected-value formula),确实是处理赌注的货币价值。但丹尼尔·伯努利(Daniel Bernoulli,1738年)注意到,这个公式对于较大金额的金钱,如海上贸易探险的投资,似乎并不适用。他提出了基于最大化期望效用的原则,并提出随着一个人获得更多的金钱,额外数量的金钱的边际效用会减少,来解释人类的投资选择。
效用理论(utilty theory)的发展
利昂·瓦尔拉斯(Léon Walras,1834-1910)为效用理论提供了一个更一般的基础,即对任何结果(不仅仅是货币结果)的赌博的偏好。这一理论后来由拉姆齐(Ramsey,1931年)改进,并由约翰·冯·诺伊曼(John von Neumann)和奥斯卡·摩根斯坦(Oskar Morgenstern)在他们的书《博弈论与经济行为》(The Theory of Games and Economic Behavior,1944年)中进一步发展。 经济学的现代定义:经济学不再仅仅是关于金钱的研究,而是关于欲望(desires)和偏好(preferences)的研究。
决策理论(Decision theory)和博弈论(Game theory)
1. 决策理论:它将概率论(probability theory)与效用理论(utility theory)结合起来,为个人在不确定性条件下做出的决策提供了一个正式且完整的框架。这里的不确定性指的是,决策者的环境可以用概率描述来恰当地捕捉。这种理论适用于“大型”经济体,在这样的经济体中,每个个体不需要关注其他个体的行为。
2. 大型经济体与小型经济体:在大型经济体中,每个决策者可以独立行动,不需要考虑其他个体的行为。然而,在小型经济体中,情况更像是一场游戏,一个参与者的行为可能会显著地影响另一个参与者的效用,无论是正面还是负面。
3. 博弈论:冯·诺伊曼和摩根斯坦发展了博弈论,其中包括一个令人惊讶的结果,即在某些游戏中,理性的决策者应该采取(或至少看起来是)随机化的政策。与决策理论不同,博弈论并没有为选择行动提供明确的指导。
4. 人工智能中的多智能体系统:在人工智能领域,涉及多个智能体的决策问题被研究在多智能体系统(multiagent systems)的标题下,这将在文档的第18章中讨论。
决策理论为个人在不确定条件下的决策提供了一种方法论,而博弈论则处理了在多参与者环境中的策略选择问题,尤其是在参与者的行动可以相互影响的情况下。在人工智能领域,这些问题通常在多智能体系统的背景下进行研究。
经济学与运筹学在决策理论方面的联系
-
经济学家通常没有解决的问题:经济学家(除了一些例外)没有解决上述列出的第三个问题,即如何在行动的回报不是立即出现,而是由于一系列行动序列的结果时,如何做出理性决策。
-
运筹学(operations research):这个问题在运筹学领域得到了研究。运筹学在第二次世界大战期间在英国出现,最初是为了优化雷达装置,后来在民间找到了无数的应用。
-
理查德·贝尔曼的工作:理查德·贝尔曼(1957年)形式化了一类称为马尔可夫决策过程(Markov decision processes)的序列决策问题(sequential decision applications)。这类问题将在第17章进行研究,并且在第22章中,以强化学习的标题进行研究。
-
经济学和运筹学的贡献:经济学和运筹学的研究为我们对理性行为者的理解做出了很多贡献。
-
人工智能研究的独立发展:然而,多年来,人工智能研究沿着完全不同的道路发展。一个原因是做出理性决策的复杂性。
-
赫伯特·西蒙的工作:开创性的人工智能研究者赫伯特·西蒙(1916-2001)因其早期的工作“满意化”(satisficing)而获得1978年的诺贝尔经济学奖。西蒙认为,基于满意化的模型——即做出“足够好”的决策,而不是费力地计算最优决策——更好地描述了实际的人类行为。
-
决策理论在AI中的复兴:自1990年代以来,对人工智能中的决策理论技术重新产生了兴趣。
1.2.4 Neuroscience
神经科学
- 神经科学的定义:神经科学是研究神经系统,特别是大脑的科学。
- 大脑与思想:尽管大脑如何使思想成为可能的具体方式仍是一个谜,但人们已经认识到大脑确实能够产生思想,这一点已经得到了几千年的证据支持,因为头部受到重击可能导致心智功能丧失。
- 人类大脑的特殊性:在公元前335年左右,亚里士多德就写道:“在所有动物中,人类相对于体型拥有最大的大脑。” 这表明人类大脑与其他动物有所不同。
- 大脑作为意识的中心:直到18世纪中叶,大脑才被广泛认为是意识的中心。在此之前,人们认为心脏和脾脏可能是意识的所在地。
- 大脑功能区域的研究:1861年,保罗·布洛卡通过对脑损伤患者的失语症(语言障碍)的研究,开启了对大脑功能组织的研究,他发现了左半球的一个特定区域——现在称为布洛卡区——负责语言的产生。
- 神经元的发现:当时已知大脑主要由神经细胞或神经元组成,但直到1873年,卡米洛·高尔基才开发了一种染色技术,使人们能够观察到单个神经元。这种技术被圣地亚哥·拉蒙-卡哈尔用于他开创性的神经元组织研究。
- 认知功能与电化学活动:现在人们普遍接受的是,认知功能是由这些结构的电化学活动产生的。也就是说,意识是由大脑中的电化学过程产生的。
- 约翰·塞尔的观点:哲学家约翰·塞尔(1992年)简洁地表达了这一观点,即简单的细胞集合可以导致思想、行动,大脑导致心智。
大脑功能映射、大脑活动测量技术的发展以及脑机接口的进展
1. 大脑功能映射:我们现在已经有一些数据,显示大脑区域与它们控制的身体部位或接收感觉输入的部位之间的映射关系。这些映射能够在几周内发生根本性的变化,一些动物似乎拥有多个映射。然而,我们并不完全理解当一个区域受损时,其他区域如何接管其功能。对于个体记忆是如何存储的,或者更高层次的认知功能是如何运作的,我们几乎没有理论。
2. 大脑活动测量技术的发展:
- 脑电图(EEG):1929年,汉斯·贝格尔发明了脑电图,这标志着对完整大脑活动的测量开始。
- 功能性磁共振成像(fMRI):1990年,小林诚等人以及2001年卡贝萨和尼伯格进一步发展了这一技术,为神经科学家提供了前所未有的详细大脑活动图像,使测量结果能够以有趣的方式对应于正在进行的认知过程。
3. 单细胞电生理记录和光遗传学:这些技术的进步允许对神经元活动的单细胞电生理记录,以及通过光遗传学方法对经过光敏感改造的单个神经元进行测量和控制。
4. 脑机接口的发展:脑机接口技术的发展,无论是用于感知还是运动控制,不仅有望帮助残疾人士恢复功能,而且还揭示了神经系统的许多方面。一个显著的发现是,大脑能够调整自己,成功地与外部设备接口,实际上将其视为另一个感觉器官或肢体。
我们对大脑功能和结构的理解正在不断深化,以及技术的发展如何帮助我们更好地理解大脑并应用于医疗和研究领域。
大脑和数字计算机在性能上的一些不同之处
1. 大脑与计算机的性能差异:大脑和数字计算机在性能上有一些根本的不同。文中提到,计算机的周期时间(即完成一次操作所需的时间)比大脑快一百万倍。但大脑通过拥有比高端个人电脑更多的存储和连接来弥补这一速度上的不足。
2. 超级计算机与大脑的比较:尽管最大的超级计算机在某些度量上与大脑相当,但大脑在存储和连接方面仍然具有优势。
3. 技术奇点(Singularity)的概念:文中提到了“技术奇点”这个概念,这是一些未来学家所关注的一个理论点。他们认为,当计算机达到超人级别的性能时,将会出现一个转折点,计算机将能够自我改进,甚至可能迅速地超越人类智能。
4. 对性能比较的批评:作者指出,仅仅比较原始数据并不特别具有启发性。即使计算机拥有几乎无限的容量,我们仍然需要在智能理解方面取得进一步的概念性突破。
5. 理论的重要性:最后,作者强调了正确理论的重要性。如果没有正确的理论,更快的机器只能更快地给出错误的答案。
尽管计算机在速度上可能超越人类大脑,但在智能的理解和应用方面,我们仍然需要深入的理论和理解。
1.2.5 Psychology
科学心理学(scientific psychology)
其起源通常可以追溯到德国物理学家的工作西斯特 · 赫尔曼·冯·亥姆霍兹(Hermann von Helmholtz) (1821-1894)和他的学生威廉 · 冯特(Wilhelm Wundt)(1832-1920)。亥姆霍兹将科学方法应用于人类视觉的,他的研究手册《Physiological Optics》被描述为“唯一最重要的物理学和人类视觉的生理学论文著作”(纳尔瓦,1993,第15页)。
行为主义心理学(Behaviorism)
1. 生物学家研究动物行为:生物学家在研究动物行为时,并没有使用内省数据(即个体对自己心理过程的反思和描述),而是发展了一种客观的研究方法。
2. H. S. Jennings的工作:H. S. Jennings 在1906年的有影响力的著作《Behavior of the Lower Organisms》中描述了这种客观的方法论。
3. 行为主义运动:将这种观点应用于人类,行为主义运动由约翰·沃森(John Watson)领导,他拒绝接受任何涉及心理过程的理论,因为内省不能提供可靠的证据。
4. 行为主义者的研究方法:行为主义者坚持只研究动物接受到的感知(或刺激)和其产生的行动(或反应)的客观度量。
5. 行为主义在动物研究上的成功:行为主义在研究老鼠和鸽子等动物方面取得了很多成果。
6. 行为主义在理解人类上的局限性:尽管行为主义在动物研究上取得了成功,但在理解人类行为方面却不太成功。
认知心理学(Cognitive psychology)
-
认知心理学的定义:认知心理学将大脑视为一个信息处理设备。这种观点可以追溯到至少威廉·詹姆斯(William James,1842-1910年)的工作。
-
感知与逻辑推断:赫尔姆霍兹(Helmholtz)坚持认为,感知涉及到一种无意识的逻辑推断。
-
认知心理学与行为主义:在美国,认知心理学的观点在很大程度上被行为主义所掩盖。行为主义主张研究客观可测量的行为,而忽视了内在的心理过程。
-
认知心理学的复兴:在剑桥的应用心理学单位,由弗雷德里克·巴特利特(Frederic Bartlett,1886-1969年)领导,认知建模得以蓬勃发展。
-
《解释的本质》:巴特利特的学生和继任者肯尼斯·克拉克(Kenneth Craik)在1943年的著作《解释的本质》中,有力地重新确立了信念和目标等“心理”术语的合法性。他主张这些术语与使用压力和温度来讨论气体一样科学,尽管气体由分子组成,而这些分子本身并没有压力和温度。
-
知识型代理的三个关键步骤:克拉克明确了知识型代理的三个关键步骤:(1) 刺激必须被翻译成内部表示。(2) 通过认知过程操作这个表示,以派生出新的内部表示。(3) 这些新的表示再被重新翻译回行动。
-
设计的优势:克拉克清楚地解释了为什么这是一个好的代理设计:如果有机体在头脑中携带一个外部现实和自身可能行动的“小型模型”,它就能够尝试各种替代方案,得出哪一个是最好的,对未来的情况做出反应,利用过去的知识来处理现在和未来的事情,并以更全面、更安全、更有能力的方式对面临的紧急情况做出反应。
-
克拉克(Kenneth Craik)在1945年因自行车事故去世后,他的工作由唐纳德·布罗德本特(Donald Broadbent)继续。布罗德本特的著作《感知与沟通》(Perception and Communication, 1958年)是最早将心理现象建模为信息处理的作品之一。在美国,计算机建模的发展促成了认知科学的诞生。这个领域可以说始于1956年9月在麻省理工学院(MIT)的一个研讨会,这个研讨会发生在人工智能(AI)诞生的会议两个月后。认知科学的重要论文:在1956年的MIT研讨会上,乔治·米勒(George Miller)提出了《魔法数字7》(The Magic Number Seven),诺姆·乔姆斯基(Noam Chomsky)提出了《三种语言模型》(Three Models of Language),艾伦·纽厄尔(Allen Newell)和赫伯特·西蒙(Herbert Simon)提出了《逻辑理论机》(The Logic Theory Machine)。这三篇有影响力的论文展示了如何使用计算机模型来分别解决记忆、语言和逻辑思考的心理学问题。现在,心理学家普遍(尽管并非普遍)认为“认知理论应该像计算机程序一样”(Anderson, 1980),即应该用信息处理的方式来描述认知功能的运作。
人机交互(HCI):HCI的先驱之一道格·恩格尔巴特(Doug Engelbart)提倡智能增强(IA)的概念,而不是人工智能(AI)。他认为计算机应该增强人类能力,而不是取代人类的任务。1968年,恩格尔巴特的“所有演示之母”首次展示了计算机鼠标、窗口系统、超文本和视频会议,这些都是为了展示人类知识工作者在智能增强的帮助下能够共同完成什么。
智能增强与人工智能的关系:今天,我们更倾向于将智能增强(IA)和人工智能(AI)视为同一硬币的两面,前者强调人类控制,后者强调机器的智能行为。两者都是使机器对人类有用的必需条件。
1.2.6 Computer engineering
现代数字电子计算机的发明和早期发展
- 独立发明:现代数字电子计算机几乎同时在第二次世界大战期间由三个国家的科学家独立发明。这表明当时的科技竞争非常激烈,各国都在寻求技术上的突破。
- Heath Robinson:这是第一台投入运行的计算机,是一种电子机械装置,由艾伦·图灵的团队在1943年建造,主要用途是破译德国的密码信息。它的名字来源于一位英国漫画家,这位漫画家以描绘复杂而荒谬的装置而闻名。
- Colossus:同样是在1943年,图灵的团队开发了Colossus,这是一款基于真空管的强大通用计算机。
- Z-3:由德国的康拉德·楚泽(Konrad Zuse)在1941年发明的第一台可编程的计算机。楚泽还发明了浮点数和第一种高级编程语言,称为Plankalkül。
- ABC:由约翰·阿塔纳索夫(John Atanasoff)和他的学生克利福德·贝里(Clifford Berry)在1940年至1942年间在爱荷华州立大学组装的第一台电子计算机。尽管阿塔纳索夫的研究在当时并没有得到很多支持或认可,但ENIAC(由约翰·莫克利和J.普雷斯珀·埃克特在宾夕法尼亚大学作为秘密军事项目开发的计算机)被认为是现代计算机最有影响力的先驱。
计算机技术的快速发展和早期计算机在军事和密码学领域的应用,同时也指出了计算机硬件性能的持续提升,这是摩尔定律所描述的趋势。
摩尔定律(Moore's law):
是由英特尔(Intel)创始人之一戈登·摩尔提出的。其内容为:集成电路上可容纳的晶体管数目,约每隔两年便会增加一倍;而经常被引用的“18个月”,则是由英特尔首席执行官大卫·豪斯(David House)提出:预计18个月会将芯片的性能提高一倍(即更多的晶体管使其更快),是一种以倍数增长的观测。[1]
尽管近现代的数十年间摩尔定律均成立,但它仍应被视为是对现象的观测或对未来的推测,而不应被视为一个物理定律或者自然界的规律。从另一角度看,未来的增长率在逻辑上无法保证会跟过去的数据一样,也就是逻辑上无法保证摩尔定律会持续下去。近年来,行业专家尚未就摩尔定律何时停止适用达成共识。虽然原本预计摩尔定律将持续到至少2020年,[3]然而,2010年国际半导体技术发展路线图的更新增长已经在2013年年底放缓[4],低于摩尔定律预测的速度。但是,截至2018年,一些强大的半导体制造商已经开发出大规模生产的半导体组件制造工艺,据称这些工艺与摩尔定律仍将保持同步。
计算机硬件的发展
自某个时期以来,每一代计算机硬件都带来了速度的增加和容量的提升,同时价格在下降,这一趋势被称为摩尔定律。摩尔定律是由英特尔联合创始人戈登·摩尔在1965年提出的,他预测集成电路上可容纳的晶体管数量大约每两年翻一番,性能也随之提升。文中指出,这种性能的翻倍大约每18个月发生一次,直到2005年左右。
之后,由于散热问题,制造商开始增加CPU核心的数量而不是单纯提升时钟频率。目前,人们期望未来的功能提升将来自于大规模并行处理能力,这与大脑的特性有着有趣的相似之处。此外,还出现了基于这样一个理念的新型硬件设计:在处理不确定的世界时,我们并不需要64位的数字精度;16位(如bfloat16格式)甚至8位的精度就足够了,这将使得处理速度更快。
文中还提到,我们开始看到为AI应用而优化的硬件,例如图形处理单元(GPU)、张量处理单元(TPU)和晶圆级引擎(WSE)。从20世纪60年代到大约2012年,用于训练顶级机器学习应用的计算能力遵循摩尔定律。但从2012年开始,情况发生了变化:2012年到2018年间,计算能力增加了300,000倍,相当于大约每100天翻一番。例如,2014年需要一整天来训练的机器学习模型,在2018年只需要两分钟。最后,文中提到量子计算,尽管目前还不实用,但它为某些重要的AI算法子类提供了极大的加速潜力。
人工智能(AI)的历史基础和早期计算设备的发展
-
计算设备的早期历史:在电子计算机出现之前,已经有了一些计算设备。最早的自动化机器可以追溯到17世纪,具体内容在文档的第6页进行了讨论。
-
可编程机器:1805年,约瑟夫·玛丽·雅卡尔(Joseph Marie Jacquard)设计了一种织布机,这是第一台可编程的机器。它使用穿孔卡片来存储编织图案的指令,这种技术后来对计算机编程产生了重要影响。
-
查尔斯·巴贝奇的计算机器:19世纪中叶,查尔斯·巴贝奇设计了两种计算机器,但都没有完成。其中,差分机(Difference Engine)旨在计算工程和科学项目所需的数学表。直到1991年,差分机才被建成并证明可以工作。巴贝奇的分析机(Analytical Engine)更为雄心勃勃,它包括可寻址的内存、基于雅卡尔穿孔卡片的存储程序和条件跳转,是第一台能够进行通用计算的机器。
-
艾达·洛夫莱斯:巴贝奇的同事艾达·洛夫莱斯(Ada Lovelace),诗人拜伦的女儿,理解了分析机的潜力,将其描述为“一种思考或推理机器”,能够对“宇宙中的所有主题”进行推理。她还预见了AI的炒作周期,并警告人们不要对分析机的能力抱有过高的期望。不幸的是,巴贝奇的机器和洛夫莱斯的想法在很大程度上被遗忘了。
-
AI与计算机科学的债务:AI也欠了计算机科学软件方面的"债务",后者提供了编写现代程序(以及关于它们的论文)所需的操作系统、编程语言和工具。但这也是AI已经偿还"债务"的一个领域:AI中的工作开创了许多想法,这些想法已经回归到主流计算机科学中,包括时分共享、交互式解释器、带有窗口和鼠标的个人计算机、快速开发环境、链表数据类型、自动存储管理,以及符号、函数、声明性和面向对象编程的关键概念。
1.2.7 Control theory and cybernetics
控制理论(control theory)
- Ktesibios of Alexandria 在公元前250年左右建造了第一台自我调节的机器,这是一种带有调节器的水钟,能够维持恒定的流量。这项发明改变了人们对人造物品能力的认识,在此之前,只有生物才能根据环境变化调整自己的行为。
- James Watt 创造了蒸汽机调速器,而 Cornelis Drebbel 发明了恒温器,后者也是潜艇的发明者。这些都属于自我调节反馈控制系统的例子。
- James Clerk Maxwell 在1868年开创了控制系统的数学理论。
- Norbert Wiener 是战后控制理论发展中的一个核心人物。他是一位杰出的数学家,与伯特兰·罗素等人合作过,后来对生物和机械控制系统及其与认知的联系产生了兴趣。Wiener 和他的同事 Arturo Rosenblueth 和 Julian Bigelow 对行为主义正统提出了挑战,他们认为有目的的行为源于试图最小化“误差”(即当前状态与目标状态之间的差异)的调节机制。
- 在20世纪40年代后期,Wiener 与 Warren McCulloch、Walter Pitts 和 John von Neumann 一起组织了一系列有影响力的会议,探讨了认知的新数学和计算模型。Wiener 的书《Cybernetics》(1948年)成为畅销书,唤醒了公众对人工智能机器可能性的认识。
- 同时在英国,W. Ross Ashby开创了类似的想法。Ashby、Alan Turing、Grey Walter 和其他人组成了 Ratio Club,这个俱乐部是为“那些在 Wiener 书出版之前就有 Wiener 思想的人”而设。Ashby 的《Design for a Brain》(1948年,1952年)详细阐述了他的观点,即智能可以通过使用包含适当反馈循环的稳态装置来创造,以实现稳定的适应性行为。
- 现代控制理论,特别是被称为随机最优控制的分支,其目标是设计系统以最大化随时间变化的“成本函数”。这大致符合 AI 的标准模型:设计最优行为的系统。
- 尽管它们的创始人之间有着密切的联系,但 AI 和控制理论是两个不同的领域。原因在于参与者熟悉的数学技术与每个世界观所包含的问题集之间的紧密结合。控制理论的工具,如微积分和矩阵代数,适用于可以用固定组的连续变量描述的系统,而 AI 的一部分创立初衷是为了摆脱这些感知上的限制。逻辑推理和计算的工具使 AI 研究者能够考虑诸如语言、视觉和符号规划等问题,这些问题完全超出了控制理论家的考虑范围。
1.2.8 Linguistics
在1957年,B. F. Skinner出版了《Verbal Behavior》一书。这是一本全面且详尽的著作,详细阐述了行为主义在语言学习上的方法,由该领域最著名的专家撰写。然而,有趣的是,这本书的书评与书本身一样出名,并且几乎扼杀了人们对行为主义的兴趣。书评的作者是语言学家诺姆·乔姆斯基(Noam Chomsky),他刚好发表了一本关于自己理论的书《Syntactic Structures》。
乔姆斯基指出,行为主义理论没有涉及到语言的创造性概念——它没有解释儿童如何理解并构造出他们从未听过的句子。乔姆斯基的理论基于可以追溯到公元前350年左右的印度语言学家潘尼尼(Panini)的句法模型,能够解释这一点,并且与以往的理论不同,它的形式化程度足以在原则上被编程实现。
现代语言学和人工智能,因此,大约在同一时间“诞生”,并且共同成长,交织在一起形成了一个名为计算语言学或自然语言处理的混合领域。理解语言的问题结果证明比1957年看起来要复杂得多。理解语言需要对主题和上下文有所理解,而不仅仅是对句子结构的理解。这可能看起来是显而易见的,但直到1960年代才被广泛认识。知识表示的早期工作(即将知识转化为计算机可以推理的形式的研究)与语言紧密相关,并且受到语言学研究的启发,这反过来又与几十年来对语言的哲学分析有关。
1.3 The History of Artificial Intelligence
-
图灵奖获得者:图灵奖是计算机科学领域的最高荣誉,通常被认为是计算机科学界的诺贝尔奖。文中提到的图灵奖获得者对AI领域的发展做出了重要贡献。
-
Marvin Minsky (1969) 和 John McCarthy (1971):这两位科学家因为基于表示(representation)和推理(reasoning)定义了AI领域的基础而获得图灵奖。他们为AI的逻辑和计算模型奠定了基础。
-
Ed Feigenbaum 和 Raj Reddy (1994):这两位科学家因为开发了专家系统(expert systems)而获奖。专家系统是一种能够模拟专家决策过程的计算机程序,它们将人类知识编码起来以解决现实世界的问题。
-
Judea Pearl (2011):朱迪亚·珀尔因为开发了处理不确定性的概率推理技术而获得图灵奖。这些技术以一种原则性的方式处理不确定性,对AI的决策过程至关重要。
-
Yoshua Bengio, Geoffrey Hinton, 和 Yann LeCun (2019):这三位科学家因为使深度学习(deep learning,即多层神经网络)成为现代计算的关键部分而共同获得图灵奖。他们的工作推动了AI在图像识别、自然语言处理等领域的革命性进展。
-
AI历史的各个阶段:这段文字的后半部分提到,接下来的部分将更详细地介绍AI历史的每个阶段。
1.3.1 The inception of artificial intelligence
- 人工智能的早期工作可以追溯到1943年,由Warren McCulloch和Walter Pitts完成。他们的工作受到了Nicolas Rashevsky的数学建模研究的启发,他们借鉴了三个来源:大脑中神经元的功能和基本生理学知识;Russell和Whitehead的命题逻辑形式分析;以及图灵的计算理论。他们提出了一个人工神经元模型,每个神经元被描述为“开”或“关”,并且当足够数量的邻近神经元刺激时,会切换到“开”状态。神经元的状态被构想为“事实上等同于提出其适当刺激的命题”。他们展示了任何可计算函数都可以通过某些连接的神经元网络来计算,并且所有的逻辑连接词(AND, OR, NOT等)都可以通过简单的网络结构来实现。McCulloch和Pitts还提出,适当定义的网络可以学习。
- Donald Hebb在1949年展示了一个修改神经元之间连接强度的简单更新规则,现在被称为Hebbian学习,这个模型至今仍然具有影响力。
- 哈佛的两名本科生Marvin Minsky和Dean Edmonds在1950年建造了第一台神经网络计算机,称为SNARC。它使用了3000个真空管和一个来自B-24轰炸机的剩余自动驾驶机制来模拟40个神经元的网络。后来,在普林斯顿,Minsky研究了神经网络中的通用计算。他的博士委员会对这种工作是否应该被认为是数学表示怀疑,但据说冯·诺伊曼说:“如果不是现在,将来也会是。”
- 还有其他一些早期工作可以被归类为人工智能,包括1952年由曼彻斯特大学的Christopher Strachey和IBM的Arthur Samuel独立开发的两个跳棋程序。然而,Alan Turing的愿景是最有影响力的。
-
艾伦·图灵(Alan Turing)在1947年的伦敦数学学会上就人工智能主题进行了演讲,并在1950年的文章《计算机器与智能》(Computing machinery and intelligence)中提出了一个有说服力的议程。在这篇文章中,他引入了图灵测试(Turing Test)、机器学习(machine learning)、遗传算法(genetic algorithm)和强化学习(reinforcement learning)等概念。图灵测试是一种评估机器是否具有人类智能的方法。他还讨论了实现人工智能可能面临的许多反对意见,并提出通过开发学习算法来教育机器,而不是手动编程其智能,可能是实现人类水平人工智能的更容易的方法。图灵在后续的演讲中警告说,实现这一目标可能对人类并非最佳选择。
-
1955年,达特茅斯学院的约翰·麦卡锡(John McCarthy)说服了马文·明斯基(Marvin Minsky)、克劳德·香农(Claude Shannon)和内森尼尔·罗切斯特(Nathaniel Rochester)等研究人员,组织了一个关于自动机理论、神经网络和智能研究的研讨会。他们于1956年夏天在达特茅斯举办了为期两个月的工作坊,共有10位与会者,包括来自卡内基技术学院的艾伦·纽厄尔(Allen Newell)和赫伯特·西蒙(Herbert Simon)、普林斯顿大学的特伦查德·莫尔(Trenchard More)、IBM的亚瑟·塞缪尔(Arthur Samuel)以及麻省理工学院的雷·索洛莫夫(Ray Solomonoff)和奥利弗·塞尔弗里奇(Oliver Selfridge)。他们提出了一个研究计划,认为学习或智能的任何方面原则上都可以被精确描述,以至于机器可以模拟它。他们计划探索如何让机器使用语言、形成抽象和概念、解决目前仅由人类解决的问题,并自我改进。
-
尽管这个预测非常乐观,但达特茅斯研讨会并没有带来任何突破性成果。纽厄尔和西蒙展示了他们最成熟的工作——一个名为逻辑理论家(Logic Theorist, LT)的数学定理证明系统。西蒙声称他们发明了一个能够非数值思考的计算机程序,从而解决了著名的心身问题(mind-body problem)。
-
研讨会后不久,LT程序能够证明罗素和怀特海的《数学原理》第二章中的大部分定理。罗素听说LT为其中一个定理找到了比《数学原理》中更短的证明时,感到非常高兴。然而,《符号逻辑杂志》的编辑们对此并不买账,他们拒绝了纽厄尔、西蒙和逻辑理论家共同撰写的一篇论文。
1.3.2 Early enthusiasm ,great expectation(1952-1969)
Newell和Simon是两位著名的人工智能研究者,他们在开发了名为LT(Logic Theorist)的程序之后,又开发了另一个程序,称为GPS(General Problem Solver)。与LT不同,GPS从设计之初就旨在模仿人类的解决问题的方法。
GPS在它能够处理的有限类型的谜题中,其考虑子目标和可能行动的顺序与人类解决同样问题时的顺序相似。因此,GPS可能是第一个体现“像人类一样思考”的程序。GPS及其后续程序作为认知模型的成功,促使Newell和Simon在1976年提出了著名的“物理符号系统假设”(physical symbol system hypothesis)。这个假设表明,“一个物理符号系统具有执行一般智能行为所必需和充分的手段。”他们的意思是一个展示智能的系统(无论是人类还是机器)必须通过操作由符号组成的数据结构来运作。
这段文字还提到,尽管这个假设后来受到了多方面的挑战,但它在当时对人工智能领域的发展产生了深远的影响。物理符号系统假设强调了符号操作在智能行为中的重要性,并且为后来的人工智能研究提供了一个理论基础。
在IBM,Nathaniel Rochester和他的同事们开发了一些最早的人工智能程序。Herbert Gelernter在1959年构建了一个名为“几何定理证明器”(Geometry Theorem Prover)的程序,这个程序能够证明许多数学学生会认为相当棘手的定理。这项工作是现代数学定理证明器的先驱。
在所有这个时期的探索性工作中,可能对长远影响最大的是Arthur Samuel在跳棋(checkers,又称国际跳棋或西洋跳棋)上的工作。Samuel使用我们现在称为强化学习的方法,他的程序学会了以一个强业余水平下棋。他因此推翻了计算机只能做它们被告知的事情的观点:他的程序很快就学会了比它的创造者下得更好的棋。1956年,这个程序在电视上展示,给人留下了深刻的印象。Samuel像图灵一样,也遇到了寻找计算机时间的困难。他在夜间工作,使用的是IBM制造厂测试楼层上的机器。Samuel的程序是后来系统的先驱,比如TD-GAMMON(1992年,Tesauro),它是世界上最好的西洋双陆棋手之一,还有AlphaGo(2016年,Silver等人),它震惊了世界,因为它击败了人类围棋世界冠军(见第5章)。
1958年,John McCarthy对人工智能做出了两项重要贡献。在MIT AI实验室备忘录第1号中,他定义了高级语言Lisp,这将成为未来30年AI编程的主导语言。在一篇题为《具有常识的程序》(Common sense)的论文中,他提出了基于知识和推理的AI系统的概念性建议。论文描述了一个名为“建议接受者”(Advice Taker)的假设程序,该程序将体现对世界的一般知识,并能够利用它来制定行动计划。这个概念用简单的逻辑公理来说明,这些公理足以生成一个开车去机场的计划。该程序还被设计为在正常操作过程中接受新的公理,从而允许它在不被重新编程的情况下在新领域获得能力。因此,“建议接受者”体现了知识表示和推理的中心原则:拥有对世界及其运作的正式、明确的表示是有用的,并且能够用演绎过程来操作这种表示。这篇论文影响了AI的进程,并且至今仍然相关。
特别是1958年,这一年对于人工智能领域来说具有重要意义,因为它标志着Marvin Minsky(马文·明斯基)搬到了麻省理工学院(MIT)。Marvin Minsky是人工智能领域的一位先驱人物,他在MIT与John McCarthy(约翰·麦卡锡)有过初步的合作,但这段合作并没有持续下去。
原因在于,McCarthy强调的是形式逻辑中的表示(representation)和推理(reasoning),他致力于开发能够使用世界通用知识来推导行动计划的人工智能系统。而Minsky则更倾向于让程序实际工作起来,并且最终发展出了一种反逻辑的观点。1963年,McCarthy在斯坦福大学(Stanford)成立了人工智能实验室,他的计划是使用逻辑来构建一个终极的"Advice Taker"(建议接受者),这是一个假想中的程序,能够体现世界常识,并能够使用这些知识来推导出行动计划。在斯坦福大学,研究强调了用于逻辑推理的通用方法。这些逻辑应用包括Cordell Green的问题解答(question-answering)和规划系统(planning systems)(Green, 1969b)以及斯坦福研究所(SRI)的Shakey机器人项目。Shakey项目在第26章有更详细的讨论,它是第一个展示逻辑推理和物理活动完全整合的项目。
在麻省理工学院(MIT),马文·明斯基指导了一系列选择了需要智能解决有限问题(limited problems)的学生。这些有限领域(limited domains)后来被称为“微世界”(microworlds)。
James Slagle的SAINT程序(1963年)能够解决大学一年级课程中典型的封闭形式的微积分积分问题。Tom Evans的ANALOGY程序(1968年)解决了在智商测试中出现的几何类比问题。Daniel Bobrow的STUDENT程序(1967年)解决了代数故事问题,例如:
如果Tom得到的顾客数量是他投放的广告数量的20%的平方的两倍,而他投放的广告数量是45,那么他得到的顾客数量是多少?
最著名的微世界是“积木世界”(blocks world),它由一组放在桌面上(或者更常见的是桌面模拟)的实体积木组成,如图1.3所示。
在这个世界中,一个典型的任务是使用一次能拿起一个积木的机器手,以某种方式重新排列积木。积木世界是David Huffman(1971年)的视觉项目、David Waltz(1975年)的视觉和约束传播工作、Patrick Winston(1970年)的学习理论、Terry Winograd(1972年)的自然语言理解程序以及Scott Fahlman(1974年)的规划器的发源地。
基于McCulloch和Pitts的神经网络的早期工作也得到了发展。Shmuel Winograd和Jack Cowan(1963年)展示了大量元素如何共同表示一个单独的概念,这相应地增加了鲁棒性和并行性。Hebb的学习法被Bernie Widrow(Widrow和Hoff, 1960;Widrow, 1962)通过他称之为adalines的网络增强,以及由Frank Rosenblatt(1962年)通过他的perceptrons增强。感知机收敛定理(the perceptron convergence theorem)(Block等人,1962年)表明,学习算法可以调整感知器的连接强度以匹配任何输入数据,只要这样的匹配存在。
1.3.3 A dose of reality(1966-1973)
Herbert Simon 在1957年的声明经常被引用,他说:“我的目的不是要让你惊讶或震惊——但最简单的总结方式是说,现在世界上有能够思考、学习和创造的机器。而且,它们做这些事情的能力将会迅速增长,直到——在一个可见的未来——它们能够处理的问题范围将与人类心智所应用的范围一样广泛。”
Simon 还做出了更具体的预测,即在10年内,计算机将成为国际象棋冠军,并且机器将证明一个重要的数学定理。这些预测在40年内(而不是10年)或多或少地实现了。Simon 的过度自信是由于早期AI系统在简单例子上的出色表现。然而,在几乎所有情况下,这些早期系统在更复杂的问题上失败了。
失败有两个主要原因。首先,许多早期AI系统主要基于对人类如何执行任务的“知情内省(informed introspection)”,而不是对任务本身的仔细分析,以及对解决方案的含义、算法需要做什么来可靠地产生这些解决方案的理解。其次,对AI试图解决的许多问题的棘手性缺乏认识。大多数早期的问题解决系统通过尝试不同的步骤组合直到找到解决方案。这种策略最初有效,因为微世界包含的对象很少,因此可能的动作和解决方案序列也很短。在计算复杂性理论发展之前,人们普遍认为“扩大规模”到更大的问题仅仅是更快的硬件和更大的内存的问题。例如,伴随着决议定理证明的发展,当研究人员未能证明涉及几十个事实以上的定理时,这种乐观情绪很快就被抑制了。
早期的机器进化(machine evolution)实验(现在称为遗传编程 genetic programming),这些实验基于通过对机器代码程序进行一系列适当的小突变,可以生成针对任何特定任务具有良好性能的程序的无疑正确的信念。然后,想法是尝试随机突变,并使用选择过程来保留看起来有用的突变。尽管花费了数千小时的CPU时间,但几乎没有显示出任何进展。
“组合爆炸”(combinatorial explosion)
这是一个主要的批评点,被包含在Lighthill报告(Lighthill, 1973)中。组合爆炸是指在解决问题时,可能的解决方案数量急剧增加,导致计算资源不足以处理所有可能性。这个问题是AI研究中的一个重大障碍,因为它限制了AI系统处理复杂问题的能力。Lighthill报告对AI的批评导致了英国政府决定除了两所大学外,停止对AI研究的支持。
用于生成智能行为的基本结构存在根本性限制。例如,Minsky和Papert在他们的书《Perceptrons》(1969年)中证明了,尽管感知机(一种简单的神经网络)能够学习它们能够表示的任何事物,但它们能够表示的内容非常有限。特别是,一个双输入感知机不能被训练来识别其两个输入何时不同。尽管这些结果不适用于更复杂的多层网络,但神经网络研究的资金很快就几乎枯竭了。具有讽刺意味的是,后来在1980年代末和2010年代再次引发神经网络研究巨大复兴的反向传播学习算法,实际上在1960年代初就已经在其他背景下被开发出来了。
1.3.4 Expert systems(1960-1986)
在人工智能研究的第一个十年,问题解决的方法是使用通用搜索机制,将基本的推理步骤串联起来以找到完整的解决方案。这种方法被称为“弱方法”(Weak method),因为尽管它们具有通用性,但它们无法扩展到大型或复杂的问题实例。弱方法虽然可以应用于多种问题,但它们在面对大型或困难的问题时表现不佳,因为它们无法有效处理。
作为弱方法的替代,专家系统使用更强大的、特定领域的知识来允许更大的推理步骤,并且能够更容易地处理在特定专业知识领域中常见的情况。这可以被理解为,要解决一个难题,你几乎需要已经知道答案。
DENDRAL程序是这种新方法的一个早期例子。它是由斯坦福大学的Ed Feigenbaum、Bruce Buchanan和Joshua Lederberg共同开发的,目的是解决从质谱仪提供的信息推断分子结构的问题。程序的输入包括分子的基本公式(例如C6H13NO2)和质谱图,后者提供了分子在被电子束轰击时产生的各种碎片的质量。程序的简单版本会生成所有与公式一致的可能结构,并预测每个结构的质谱图,然后与实际的质谱图进行比较。但这种方法对于中等大小的分子来说也是不可行的。DENDRAL研究人员咨询了分析化学家,并发现他们通过寻找质谱图中的已知峰值模式来推断分子中的常见子结构。例如,使用一个规则来识别酮(C=O)子群(重28),这个规则涉及到分子的总质量和两个特定的峰值x1和x2。通过识别分子中的特定子结构,可以极大地减少可能的候选结构数量,这是DENDRAL程序强大的原因之一,因为它体现了质谱学的相关专业知识,不是以第一原理的形式,而是以实际应用的形式。
DENDRAL 是一个早期的人工智能程序,它能够根据质谱仪提供的信息推断出分子结构。DENDRAL 的强大之处在于它不是以基本原理的形式,而是以高效的“食谱式规则”(cookbook recipes)来体现质谱学的相关知识点。这种规则是通过对专家的广泛咨询而得到的。DENDRAL 是第一个成功的知识密集型系统,它的专长来源于大量特定用途的规则。
1971年,Feigenbaum 和斯坦福大学的其他研究人员开始了启发式编程项目(HPP),以调查专家系统新方法可以应用到其他领域的程度。
MYCIN 是一个用于诊断血液感染的系统,包含大约450条规则,能够像一些专家那样进行诊断,甚至比初级医生表现得更好。与DENDRAL 相比,MYCIN 有两个主要的不同之处:首先,与DENDRAL 规则不同,没有通用的理论模型可以推导出MYCIN 规则,它们必须通过对专家的广泛访谈来获取;其次,规则必须反映与医学知识相关的不确定性。MYCIN 引入了一种称为确定性因素(certainty factors)的不确定性计算方法,这在当时看起来与医生评估证据对诊断影响的方式非常契合。
第一个成功的商业专家系统 R1 在数字设备公司(Digital Equipment Corporation)开始运作。该程序帮助为新计算机系统配置订单;到1986年,它每年为公司节省了大约4000万美元。到1988年,DEC的AI小组部署了40个专家系统,并有更多的系统在开发中。杜邦公司有100个在使用中,500个在开发中。几乎每个美国大公司都有自己的AI小组,并且正在使用或研究专家系统。
尽管 Winograd 的 SHRDLU 系统取得了成功,但它的方法并不能扩展到更一般的任务。例如,在解决歧义问题时,它使用的是依赖于积木世界的狭小范围的简单规则。一些研究人员,包括 MIT 的 Eugene Charniak 和耶鲁大学的 Roger Schank,建议强大的语言理解将需要关于世界的一般知识以及使用这些知识的一般方法。
针对现实世界问题的应用程序的广泛增长,促进了表示和推理工具的发展。有些基于逻辑,例如 Prolog 语言在欧洲和日本变得流行,美国的 PLANNER 家族。其他一些则采用了 Minsky 的框架(frames)思想,采用了更结构化的方法,将特定对象和事件类型的信息组装起来,并把这些类型排列成一个类似于生物分类的大分类层次结构。
1981年,日本政府宣布了“第五代”项目,这是一个为期10年的计划,旨在构建运行 Prolog 的大规模并行、智能计算机。预算在今天的价值上将超过13亿美元。作为回应,美国成立了微电子和计算机技术公司(MCC),这是一个旨在确保国家竞争力的联盟。在这两种情况下,AI 是包括芯片设计和人机界面研究在内的广泛努力的一部分。在英国,Alvey 报告恢复了 Lighthill 报告所取消的资金。然而,这些项目都没有实现其在新AI能力或经济影响方面的雄心勃勃的目标。
从1980年的几百万美元增长到1988年的数十亿美元,包括数百家公司在构建专家系统、视觉系统、机器人以及为这些目的专门化的软件和硬件。之后不久,出现了一个被称为“AI 冬天”的时期,许多公司因为未能兑现过分的承诺而倒闭。事实证明,构建和维护复杂领域的专家系统是困难的,部分原因是系统使用的推理方法在面对不确定性时崩溃,部分原因是系统无法从经验中学习。
1.3.5 The return of neural networks(1986-present)
在1980年代中期,至少有四个不同的研究小组重新发明了反向传播学习算法,这个算法最初是在1960年代早期开发的。反向传播算法被应用于计算机科学和心理学中的许多学习问题。这些研究成果在《并行分布式处理》(Rumelhart和McClelland,1986年)一书中广泛传播,引起了极大的兴趣。
"Connectionist"(连接主义者)是指那些认为神经网络模型是符号模型和逻辑主义方法的直接竞争者的人。符号模型是由Newell和Simon推广的,而逻辑主义方法则是由McCarthy等人所倡导的。人类在某种程度上操纵符号似乎是显而易见的,事实上,人类学家Terrence Deacon在他的书《The Symbolic Species》(1997年)中提出,这是人类的定义特征。然而,神经网络在1980年代和2010年代复兴的领军人物Geoff Hinton,将符号描述为人工智能的“以太”——这是一个指19世纪物理学家认为电磁波通过的不存在的介质的比喻。显然,我们用语言表达的许多概念,在仔细检查后,并没有早期人工智能研究者希望以公理形式捕捉的那种逻辑上定义的必要和充分条件。连接主义模型可能以一种更流动、更不精确的方式形成内部概念,这种方式更适合真实世界的混乱。它们还有从例子中学习的能力——它们可以将预测的输出值与问题的真实值进行比较,并调整参数以减少差异,使它们在未来的例子中更有可能表现良好。
1.3.6 Probabilistic reasoning and machine learning(1987-present)
专家系统的脆弱性
早期的专家系统在特定领域表现出色,但它们通常缺乏灵活性和泛化能力,导致在面对不确定或变化的环境时表现不佳。
新科学方法
为了克服这些限制,AI领域开始采用更加科学的方法,包括:
概率逻辑(probability):使用概率论来处理不确定性和模糊性,而不是传统的布尔逻辑(Boolean logic)。
机器学习:代替手工编码的规则,让系统通过数据自动学习和改进。
实验结果:依赖于实验和数据来验证假设和模型,而不是仅仅依赖于理论或哲学上的论断。
基于现有理论:研究人员更倾向于在现有理论的基础上进行构建,而不是提出全新的理论。这表明AI领域正在变得更加严谨和成熟。
实验方法论:强调使用严格的定理或坚实的实验方法来支持研究主张,而不是仅仅依赖直觉。
共享基准问题集:为了展示AI的进展,研究人员开始使用共享的基准问题集,如UC Irvine的机器学习数据集库、国际规划竞赛、LibriSpeech语音识别语料库、MNIST手写数字识别数据集等。
领域融合:AI领域开始重新接纳和整合其他领域的成果,如控制理论和统计学,以促进AI的发展。
“neats”与“scruffies”:文中提到了两种研究方法的对比,"neats"主张AI理论应该有数学上的严格基础,而"scruffies"则倾向于尝试多种想法并通过实验来验证。
两种方法都很重要,但领域正逐渐向"neats"倾斜,这表明AI正在变得更加稳定和成熟。然而,深度学习的兴起可能代表了"scruffies"方法的复兴。
跨学科整合:AI的发展不再局限于其自身领域,而是开始与其他学科如信息论、随机建模、优化和控制以及形式方法和静态分析等领域的成果相结合。
语音识别的发展模式: 在1970年代,尝试了多种不同的架构和方法。这些方法大多是临时的,脆弱的,并且只适用于少数精心挑选的例子。
到了1980年代,使用隐马尔可夫模型(Hidden Markov Models, HMMs)的方法开始主导这个领域。 隐马尔可夫模型(HMMs)的两个相关方面: 它们基于严格的数学理论,这使得语音研究人员能够利用其他领域几十年的数学成果。 它们是通过在大量真实语音数据上进行训练的过程生成的,这确保了性能的稳健性,并且在严格的盲测试中HMMs的得分稳步提高。
语音识别技术的转变: 语音技术和相关的手写字符识别领域因此过渡到了广泛的工业和消费应用。 这里没有科学上的说法认为人类使用HMMs来识别语音;相反,HMMs提供了一个数学框架,用于理解和解决问题。
1988年人工智能领域的重要发展: 这一年对人工智能与统计学、运筹学、决策理论和控制理论等领域的联系至关重要。
- 朱迪亚·珀尔(Judea Pearl)的《智能系统中的概率推理》(Probabilistic Reasoning in Intelligent Systems)导致了概率和决策理论在人工智能中的新接受度。
- 珀尔开发的贝叶斯网络(Bayesian networks)为表示不确定知识提供了严格而高效的正式方法,以及实用的概率推理算法。
强化学习的联系: 1988年的另一个重要贡献是里奇·萨顿(Rich Sutton)将强化学习与运筹学领域发展的马尔可夫决策过程(MDPs)理论联系起来。 这导致了大量将人工智能规划研究与MDPs联系起来的工作,强化学习领域在机器人技术和过程控制中找到了应用,并获得了深厚的理论基础。
人工智能(AI)对数据、统计建模、优化和机器学习带来新认识,即计算机视觉、机器人学、语音识别、多智能体系统和自然语言处理等子领域逐渐重新与核心AI领域统一。这种重新整合的过程不仅在应用方面带来了显著的好处——例如,实用机器人的部署在这段时间内有了极大的扩展——而且在对AI核心问题的理论理解上也有所提高。
具体来说,AI领域对数据的重视、统计建模的应用、优化技术的发展以及机器学习的进步,促进了这些子领域与AI核心的紧密联系。这种整合有助于跨学科的研究和创新,使得研究人员能够更全面地解决复杂问题。例如,在机器人学中,利用计算机视觉来提高机器人对环境的感知能力,在自然语言处理中,使用机器学习来改善语言理解和生成的能力。
此外,这种整合还推动了理论和实践的相互促进。一方面,对AI核心问题更深入的理论认识可以指导实际应用的开发;另一方面,实际应用中遇到的问题和需求又可以激发新的理论研究,形成良性循环。
总的来说,AI的这种跨领域整合不仅促进了技术的发展和应用的扩展,而且加深了我们对智能行为背后原理的理解,为AI领域的长远发展奠定了坚实的基础。
1.3.7 Big data(2001-present)
计算能力的巨大进步和万维网的创建促进了大数据的产生。
大数据(big data)是指非常庞大的数据集(large data sets)
这些数据集包括数万亿字的文本、数十亿的图像、数十亿小时的语音和视频,以及大量的基因组数据、车辆跟踪数据、点击流数据、社交网络数据等。为了利用这些庞大的数据集,特别设计了学习算法。这些数据集中的大多数例子通常是未标记的,例如,在Yarowsky(1995年)关于词义消歧的工作里,“plant”这个词在数据集中没有标记来指明它是指植物还是工厂。
尽管数据集中的许多例子未标记,但足够大的数据集和合适的学习算法可以在识别句子中意图的意义的任务上达到超过96%的准确率。Banko和Brill(2001年)认为,通过增加数据集的大小(增加两个或三个数量级)来获得的性能提升,远远超过了通过调整算法所能获得的任何改进。
在计算机视觉任务中,例如填补照片中的空白(由损坏或删除前朋友造成),Hays和Efros(2007年)开发了一种通过混合相似图像中的像素来完成此任务的聪明方法。他们发现,当数据库只有数千张图像时,这种技术效果不佳,但当图像数量达到数百万时,质量就达到了一个阈值。
在ImageNet数据库(Deng等人,2009年)中,数千万张图像的可用性引发了计算机视觉领域的革命。大数据的可用性和向机器学习的转变帮助人工智能恢复了商业吸引力。大数据是IBM的Watson系统在2011年Jeopardy!问答游戏中战胜人类冠军的关键因素,这一事件对公众对人工智能的看法产生了重大影响。
1.3.8 Deep learning(2011-present)
"深度学习"(deep learning)是指使用多层简单、可调的计算元素进行的机器学习。早在20世纪70年代,就已经有了这样的网络实验,而在90年代,以卷积神经网络(convolutional neural networks)的形式在手写数字识别方面取得了一些成功(LeCun等人,1995年)。然而,直到2011年,深度学习方法才真正开始流行起来,首先是在语音识别领域,然后是在视觉物体识别领域。
2012年的ImageNet竞赛要求将图像分类到一千个类别中(例如穿山甲、书架、开瓶器等),由多伦多大学的Geoffrey Hinton团队创建的深度学习系统(Krizhevsky等人,2013年)展示了比以往基于手工制作特征的系统显著的性能提升。自那以后,深度学习系统在一些视觉任务上的性能已经超越了人类(在其他一些任务上仍然落后)。在语音识别、机器翻译、医学诊断和游戏玩法等领域也报道了类似的进步。使用深度网络来表示评估函数为ALPHAGO战胜领先的人类围棋选手做出了贡献(Silver等人,2016年、2017年、2018年)。
这些显著的成功使人们对人工智能的兴趣重新燃起,包括学生、公司、投资者、政府、媒体和公众。似乎每周都有新的AI应用接近或超过人类性能的消息,通常伴随着对加速成功或新的AI冬天的猜测。
深度学习在很大程度上依赖于强大的硬件。而标准计算机CPU每秒可以执行10^9或10^10次操作,运行在专业硬件(例如GPU、TPU或FPGA)上的深度学习算法可能每秒消耗10^14到10^17次操作,主要是以高度并行化的矩阵和向量运算的形式。当然,深度学习还依赖于大量训练数据的可用性,以及一些算法技巧(见第21章)。
1.4 The State of the Art
斯坦福大学百年人工智能研究项目(也被称为AI100)召集专家小组提供有关人工智能最新技术状态的报告。他们2016年的报告(Stone等人,2016年;Grosz和Stone,2018年)得出结论,可以预期未来人工智能应用将大幅增加,包括更多的自动驾驶汽车、医疗诊断和靶向治疗,以及对老年人的物理辅助,同时指出“社会现在正处于一个关键的转折点,决定如何部署基于人工智能的技术,以促进而不是阻碍民主价值观,如自由、平等和透明度。”AI100还在aiindex.org上发布了一个AI指数来帮助追踪进展。以下是2018年和2019年AI指数报告的一些亮点(与2000年的基线相比,除非另有说明):
- 发表物:2010年至2019年间,AI论文的数量增加了20倍,每年大约有20000篇。最受欢迎的类别是机器学习。(arXiv.org上的机器学习论文从2009年到2017年每年翻倍。)计算机视觉和自然语言处理是接下来最受欢迎的。
- 态度:大约70%的AI新闻文章是中性的,但2016年到2018年间,正面调调的文章从12%增加到了30%。最常见的问题涉及伦理:数据隐私和算法偏见。
- 学生:自2010年以来,美国的课程注册增加了5倍,国际上增加了16倍。AI是计算机科学中最流行的专业。
- 会议:自2012年以来,NeurIPS的参会人数增加了800%,达到13500人。其他会议的年增长率约为30%。
- 行业:美国的AI初创公司增加了20倍,超过800家。
到2019年,AI系统在以下领域的表现已经达到或超过了人类水平:国际象棋、围棋、扑克、Pac-Man、Jeopardy!、ImageNet目标检测、有限领域的语音识别、限制领域的中文到英文翻译、Quake III、Dota 2、StarCraft II、各种Atari游戏、皮肤癌检测、前列腺癌检测、蛋白质折叠和糖尿病视网膜病变诊断。
AI系统何时(如果能够)在广泛的任务上实现人类水平的表现?Ford(2018年)采访了AI专家,发现目标年份的范围很广,从2029年到2200年,平均为2099年。在类似的调查(Grace等人,2017年)中,50%的受访者认为这可能在2066年之前发生,尽管10%的人认为最早可能在2025年发生,少数人说“永远不会。”专家们对于我们是否需要根本性的新突破或仅仅是对当前方法的改进也存在分歧。但不要把他们的预测太当回事;正如Philip Tetlock(2017年)在预测世界事件方面所展示的,专家并不比业余爱好者更好。
AI领域已经经历了几个阶段:
- 最初,人们认为机器智能是可能的。
- 接着,人们尝试通过将专家知识编码成逻辑规则来实现智能。
- 然后,人们认为世界的概率模型将成为主要工具。
- 最近,人们认为机器学习将引导出可能不基于任何被广泛理解的理论的模型。
作者强调AI的发展是不断演进的,我们无法预测下一个重大突破会是什么。
尽管一些乐观的媒体报道可能会让人相信AI的能力比实际更强,但AI目前确实已经能够做很多事情。作者列举了一些例子:
- 自动驾驶车辆:自动驾驶车辆的历史可以追溯到20世纪20年代的遥控汽车,但1980年代才出现了第一次没有特殊引导的自主驾驶演示。2005年DARPA大挑战和2007年城市挑战之后,自动驾驶汽车的发展开始加速。2018年,Waymo的测试车辆在公共道路上行驶了1000万英里,没有发生严重事故,人类驾驶员每6000英里才需要接管一次控制。此后不久,Waymo开始提供商业化的机器人出租车服务。
- 空中无人机:自2016年以来,自主固定翼无人机在卢旺达提供跨国家血液配送服务。四旋翼无人机能够执行惊人的特技动作,探索建筑物同时构建3D地图,并能自组织成自主编队。
总的来说,这段文字强调了AI技术的快速发展和其在多个领域的应用潜力,同时也指出了我们对未来AI发展模式的不确定性。
人工智能在不同领域的应用和进展
1. 有腿运动(Legged locomotion)
- BigDog: 这是一个四足机器人,由Raibert等人于2008年开发。它改变了人们对机器人运动方式的看法,不再像好莱坞电影中的机器人那样缓慢、僵硬地侧向移动,而是能够像动物一样移动,并在被推或在滑冰的池塘上滑倒时能够恢复平衡。
- Atlas: 这是一个人形机器人,不仅能在不平坦的地形上行走,还能跳上箱子并做后空翻。
2. 自主规划与调度(Autonomous planning and scheduling)
- Remote Agent: NASA的这个程序是第一个在飞船上自主规划程序,用于控制飞船的运行调度。它能够根据地面指定的高级目标生成计划,并监控这些计划的执行,检测、诊断和恢复出现的问题。
- EUROPA规划工具包: 用于NASA火星探测器的日常操作。
- SEXTANT系统: 允许在远离全球GPS系统的深空中进行自主导航。
3. 动态分析与重规划工具(Dynamic Analysis and Replanning Tool, DART)
- 在1991年波斯湾危机期间,美军部署了这个工具,用于自动化物流规划和调度,涉及多达50,000辆车辆、货物和人员,必须考虑起点、目的地、路线、运输能力、港口和机场容量以及所有参数之间的冲突解决。
4. 机器翻译(Machine translation)
- 在线机器翻译系统现在能够阅读超过100种语言的文档,包括超过99%人类的母语,并为数亿用户提供每天数千亿个词的翻译服务。尽管不是完美的,但通常足以理解。对于训练数据丰富且关系密切的语言(如法语和英语),在狭窄领域内的翻译接近人类水平。
5. 语音识别(Speech recognition)
- 2017年,微软展示了其对话语音识别系统在转录电话对话的Switchboard任务上达到了5.1%的词错误率,与人类表现相当。
- 全球约三分之一的计算机交互现在是通过语音而不是键盘完成的;Skype提供十种语言的实时语音到语音翻译。
6. 推荐系统(Recommendations)
- 像亚马逊、Facebook、Netflix、Spotify、YouTube、沃尔玛等公司使用机器学习根据你的过去经历和像你这样的人的经历来推荐你可能喜欢的东西。推荐系统领域有着悠久的历史,但由于新的深度学习方法,正在迅速变化,这些方法分析内容(文本、音乐、视频)以及历史和元数据。
7. 垃圾邮件过滤
- 可以被视为一种推荐(或不推荐)形式;当前的AI技术过滤掉超过99.9%的垃圾邮件,电子邮件服务还可以推荐潜在的收件人,以及可能的回复文本。
8. 游戏领域
- 1997年,IBM的超级计算机深蓝(Deep Blue)击败了世界国际象棋冠军加里·卡斯帕罗夫(Garry Kasparov),引发了人们对人工智能在围棋领域的潜力的关注。天体物理学家皮特·哈特(Piet Hut)预测,计算机在围棋上战胜人类可能需要一百年甚至更长时间。
- 然而,仅仅20年后,AlphaGo超越了所有人类围棋选手。AlphaGo通过学习成千上万的人类围棋对局,以及团队中专家的知识,取得了这一成就。世界围棋冠军柯洁(Ke Jie)表示,AlphaGo去年的玩法还相当人性化,但今年它变得像围棋之神。
- 继AlphaGo之后,AlphaZero是一个无需人类输入(除了游戏规则)的后续程序,仅通过自我对弈就能在围棋、国际象棋和将棋等棋类游戏中击败所有对手,无论是人类还是机器。
10. 图像理解
- 计算机视觉研究者不仅在ImageNet对象识别任务上超越了人类的准确性,还挑战了图像描述这一更困难的问题。一些令人印象深刻的例子包括描述摩托车、比萨饼和飞盘游戏的场景。
- 然而,当前的系统还远非完美,有时会将“装满食物和饮料的冰箱”误识别为部分被小贴纸遮挡的禁止停车标志。
11. 医学领域
- AI算法现在在诊断许多疾病方面与专家医生相当或更胜一筹,特别是当诊断基于图像时。例如,阿尔茨海默病、转移性癌症、眼科疾病和皮肤病等。
- 一项系统回顾和元分析发现,AI程序的平均表现与医疗专业人员相当。医疗AI的一个当前重点是促进人机伙伴关系。例如,LYLYNA系统在诊断转移性乳腺癌方面的整体准确率达到99.6%,超过了单独的人类专家,但人机结合的表现更好。
- 这些技术的广泛采用现在不再是因为诊断准确性的限制,而是因为需要证明在临床结果上的改进,并确保透明度、无偏见和数据隐私。
12. 气候科学
- 一个科学家团队因其深度学习模型赢得了2018年的Gordon Bell奖,该模型能够发现以前隐藏在气候数据中的有关极端天气事件的详细信息。他们使用配备专用GPU硬件的超级计算机,达到了每秒10的18次方次操作,是第一个做到这一点的机器学习程序。
- 其他研究者提出了一个60页的目录,列出了机器学习可以用来应对气候变化的多种方式。
1.5 Risks and Benefits of AI
弗朗西斯·培根的观点
- 弗朗西斯·培根是一位哲学家,被誉为科学方法的创始人。他在《古人的智慧》(1609年)中指出,机械艺术具有模糊的用途,既可以造成伤害,也可以提供补救。这暗示了技术进步可能带来的双刃剑效应。
人工智能的益处
- 文本强调,我们的文明是我们人类智能的产物。如果我们能够获得更强大的机器智能,那么我们的抱负和目标将会得到极大的提升。AI和机器人技术有潜力将人类从重复性的体力劳动中解放出来,并大幅提高商品和服务的生产,这可能预示着一个和平与充裕的新时代。AI加速科学研究的能力可能导致疾病的治疗方法以及解决气候变化和资源短缺的方案。Google DeepMind的CEO Demis Hassabis建议:“首先解决AI问题,然后用AI解决其他所有问题。”
- 人工智能和机器人技术有潜力将人类从重复性的劳动中解放出来,大幅提高商品和服务的生产,预示着和平与丰饶的时代。
- 加速科学研究的能力可能导致疾病的治疗方法和解决气候变化与资源短缺的方案。
人工智能的风险
- 致命的自主武器:联合国定义这类武器能够无需人类干预就能定位、选择和消灭人类目标。主要的担忧是其可扩展性,即缺乏对人类的监督意味着一个小团体可以部署大量武器针对任何可识别的目标。
- 监控和说服:AI技术可以用于大规模监控个人并检测感兴趣的活动,通过社交媒体根据机器学习技术定制信息流,可以在一定程度上修改和控制政治行为。
- 有偏见的决策制定:机器学习算法的不慎或故意滥用可能导致在评估假释和贷款申请等任务中产生种族、性别或其他受保护类别的偏见决策。
- 对就业的影响:机器取代工作的担忧由来已久。机器确实做了一些人类可能做的工作,但它们也使人类更有生产力,从而使人类更有就业机会,使公司更有利可图,从而能够支付更高的工资。
- 安全关键应用:随着AI技术的发展,它们越来越多地被用于高风险的安全关键应用,如驾驶汽车和城市管理水资源。已经发生了致命事故,凸显了使用机器学习技术开发的系统进行正式验证和统计风险分析的困难。
- 网络安全:AI技术在防御网络攻击方面很有用,例如通过检测不寻常的行为模式,但它们也会增加恶意软件的效力、生存能力和扩散能力。
随着AI系统变得更加能干,它们将承担以前由人类扮演的社会角色。正如人类过去利用这些角色制造麻烦一样,我们可以预期人类可能会滥用AI系统在这些角色中制造更多麻烦。所有上述例子都指向了治理和最终监管的重要性。目前,研究界和主要的AI研究公司已经为AI相关活动制定了自愿性自我治理原则。
长期来看,我们是否会实现长期目标:创造与人类智能相当或更高级的智能?如果真的实现了,那会怎样?对于AI的大部分历史来说,这些问题一直被日常的AI系统智能工作的挑战所掩盖。像任何广泛的学科一样,大多数AI研究人员都在特定的子领域,如游戏玩法、知识表示、视觉或自然语言理解等专业领域工作。Nils Nilsson提醒该领域要记住这些更广泛的目标,并警告说子领域有可能变成它们自己的目的本身。后来,一些AI的有影响力的创始人,包括John McCarthy、Marvin Minsky和Patrick Winston,同意Nilsson的警告,建议AI应该回归其根源,追求Herb Simon所说的“会思考、会学习、会创造的机器”。
大约在同一时间,人们开始担心创造远超人类能力的人工智能(ASI)可能不是一个好主意。图灵本人在1951年曼彻斯特的一次讲座中提出了同样的观点,引用了塞缪尔·巴特勒早期的观点,认为一旦机器思考方法开始,它将不会花费太长时间就会超越我们微弱的能力,最终我们可能必须预期机器会像巴特勒的《乌托邦》中提到的那样控制一切。随着深度学习的最新进展、Nick Bostrom的《超级智能》等书籍的出版,以及斯蒂芬·霍金、比尔·盖茨、马丁·里斯和埃隆·马斯克等人的公开声明,这些担忧变得更加普遍。
超级智能AI
人类与大猩猩的进化分支:文中提到,大约七百万年前,一个共同的祖先进化出了两个分支,一个导致了大猩猩,另一个导致了人类。作者用这个比喻来说明,如果超级智能AI被创造出来,人类可能会像大猩猩一样,对自己未来的控制权感到不满。
作者提出,如果人类在创造超级智能AI的过程中失去了对未来的控制,那么我们可能需要停止AI的研究,并放弃它可能带来的好处。这是图灵(Alan Turing)提出的警告的核心:我们是否能控制比我们更聪明的机器并不明显。如果超级智能AI最终“接管”了控制权,这将是一个设计上的失败。为了避免这种情况,我们需要理解潜在失败的来源。
Norbert Wiener强调,如果我们使用一种机械机构来实现我们的目标,但我们不能有效地干预它的运作,那么我们最好非常确定我们放入机器中的目标是我们真正想要的。
金手指问题(King Midas problem)
文中提到了一个希腊神话故事,国王Midas希望他触摸的一切都变成金子,但后来他后悔了,因为他的食物、饮料和家人都变成了金子。这个故事用来说明,如果我们在设计AI时过于字面地理解我们的目标,可能会导致我们后悔。
作者认为,解决方案不是在机器中放入一个确定的“目标”,而是要让机器努力实现人类的目标,但同时知道它们并不确切知道这些目标是什么。
尽管几乎所有的AI研究都是在现有的标准模型下进行的,但也有一些新的研究框架的早期成果。例如,第16章讨论了机器在不确定人类目标时允许自己被关闭的动机;第18章介绍了“援助游戏”(assistance games),这是一种数学上描述人类有目标而机器试图实现它,但最初不确定是什么的情况;第22章解释了“逆强化学习”(inverse reinforcement learning)方法,允许机器通过观察人类所做的选择来更多地了解人类的偏好。
第27章探讨了两个主要困难:首先,我们的选择依赖于通过一个非常复杂的难以逆转的认知架构的偏好;其次,人类可能首先就没有一致的偏好,无论是个人还是群体,所以可能不清楚AI系统应该为我们做什么。
Summary
文献和历史注释
1. 人工智能的历史和文献:Nils Nilsson(2009年)提供了一份全面的人工智能历史,他是该领域的早期先驱之一。Pedro Domingos(2015年)和Melanie Mitchell(2019年)为普通读者提供了机器学习的概览,Kai-Fu Lee(2018年)描述了国际AI领导力的竞争。Martin Ford(2018年)采访了23位领先的AI研究者。
2. 人工智能的主要专业组织:包括促进人工智能协会(AAAI)、计算机协会人工智能特别兴趣小组(SIGAI,前SIGART)、欧洲人工智能协会和人工智能与行为仿真学会(AISB)。AI合作伙伴关系汇集了许多关注AI的伦理和社会影响的商业和非营利组织。
3. AAAI的AI杂志:包含许多主题和教程文章,其网站aaai.org包含新闻、教程和背景信息。
4. AI领域的主要会议和期刊:最新的工作通常出现在主要AI会议的论文集中,如国际联合会议(IJCAI)、年度欧洲AI会议(ECAI)和AAAI会议。机器学习由国际机器学习会议和神经信息处理系统(NeurIPS)会议涵盖。主要的通用AI期刊包括《人工智能》、《计算智能》、《IEEE模式分析与机器智能交易》、《IEEE智能系统》和《人工智能研究杂志》。还有许多专注于特定领域的会议和期刊,这些将在相应的章节中介绍。
参考资料
①Artificial Intelligence - A Modern Approach -- Stuart Russell , Peter Norvig.
②人工智能:现代方法(第4版)/ (美)斯图尔特·罗素,(美)彼得·诺维格著;张博雅等译. --北京:人民邮电出版社,2023.1
关于单词
单词学习
breadth:the fact of including many different things, features, subjects, or qualities
encompass:to include different types of things
preface:an introduction at the beginning of a book explaining its purpose, thanking people who helped the author, etc
unify:to bring together; combine
millennia:a period of 1,000 years, or the time when a period of 1,000 years ends
excessive(adj.):too much
pseudocode:伪代码
undergraduate:a student who is studying for their first degree at a college or university
intellectual:relating to your ability to think and understand things, especially complicated ideas
historically:in comparison with prices, values, etc. in the past
vagueness:behaviour that suggests someone does not know very much about something or is not thinking clearly
philosophical:relating to the study or writing of philosophy
cognitive:connected with thinking or conscious mental processes
inception:the beginning of an organization or official activity
diminish:to reduce or be reduced in size or importance
eclipse:a situation in which something becomes less important
flourish:to grow or develop successfully
artefact/artifact:an object that has been made by a person, such as a tool or a decoration, especially one that is of historical interest
intellectual:relating to your ability to think and understand things, especially complicated ideas:
词组积累
loosely speaking
in a nutshell
by and large :
when everything about a situation is considered together:
There are a few small things that I don't like about my job, but by and large it's very enjoyable.