P1005 [NOIP2007 提高组] 矩阵取数游戏 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题目大意不再赘述
针对100%的题目数据,n,m<=80,这意味着我们的数值至少会达到2^80,这个大小我们long long
肯定不够,这时候你就想写高精度,但是高精度比较麻烦,而且这道题也就到2^80以上,不至于到2^1000以上,高精度的话可以参考我的另一篇题解第十五届蓝桥杯C/C++B组题解——R格式_第十五届蓝桥杯c语言b组答案-CSDN博客
其实这时候我们可以试试__int128,其范围在-2^127---2^127 -1
但是要注意__int128只能做加减乘除,判断,移位运算等操作,我们需要自己写其输入和输出,一般我们只要会自写输出即可
lll在这里指__int128
void print(lll ans)
{
if(ans==0) return;
if(ans) print(ans/10);
putchar(ans%10+'0');
}
再说说这道题的另一个核心DP
dp[N][N];
dp[i][j]表示,序列范围在[i,j]时能取到的最大值为dp[i][j]
递推公式:
max(dp[i-1][j]+a[i-1]*value[m-j+i-1],dp[i][j+1]+a[j+1]*value[m-j+i-1]);
如何理解?
[i-1]表示取其头
[j+1]表示取其尾
注意这是对一行数据,我们一行一行处理
value是2次的数组
下标是[m-j+i-1],数组长度减去区间长度就是取数的次数
遍历顺序:
for(int i=1;i<=m;i++){
for(int j=m;j>=i;j--){
dp[i][j]=max(dp[i-1][j]+a[i-1]*value[m-j+i-1],dp[i][j+1]+a[j+1]*value[m-j+i-1]);
}
}
需要注意的是,我们这样遍历,我们的dp[i][j]最终会在每一个(i==j)停下来,但是这个(i==j)的点的a[i]值我们并没有取走,所以我们要再取一次,对m个点把数取走并取最大值
for(int i=1;i<=m;i++) ma=max(ma,dp[i][i]+a[i]*value[m]);
return ma;
ACcode:
#include <iostream>
#include <cstring>
#define lll __int128
using namespace std;
const int N=90;
int n,m;
int a[N];
lll ans=0;
lll dp[N][N];//dp[i][j]表示,序列范围在[i,j]时能取到的最大值为dp[i][j]
lll value[N]={1};
lll solve(int a[]){
memset(dp,0,sizeof(0));
for(int i=1;i<=m;i++){
for(int j=m;j>=i;j--){
dp[i][j]=max(dp[i-1][j]+a[i-1]*value[m-j+i-1],dp[i][j+1]+a[j+1]*value[m-j+i-1]);
}
}
lll ma=-1;
for(int i=1;i<=m;i++) ma=max(ma,dp[i][i]+a[i]*value[m]);
return ma;
}
void print(lll ans)
{
if(ans==0) return;
if(ans) print(ans/10);
putchar(ans%10+'0');
}
int main()
{
for(int i=1;i<=N;i++) value[i]=value[i-1]<<1;//2次数组预处理
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>a[j];
}
ans+=solve(a); //一行一行处理
}
if(ans==0) cout<<"0";
else print(ans);
return 0;
}