1.算法效率
1.1 如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:
long long Fib ( int N ){if ( N < 3 )return 1 ;return Fib ( N - 1 ) + Fib ( N - 2 );}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
1.2 算法的复杂度
在编写一段可执行程序后,运行时需要耗费时间资源和空间
(
内存
)
资源 。因此
衡量一个算法的好坏,一般
是从时间和空间两个维度来衡量的
,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间
。
2.时间复杂度
2.1 时间复杂度的概念
时间复杂度的定义:在计算机科学中,
算法的时间复杂度是一个函数
,它定量描述了该算法的运行时间。
从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但我们并不需要如此精确的时间。
所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,
算法中的基本操作的执行次数(并不是程序中while循环次数总和),为算法的时间复杂度。
2.2 大O的渐进表示法
推导大
O
阶方法:
1
、用常数
1
取代运行时间中的所有加法常数。
2
、在修改后的运行次数函数中,只保留最高阶项。
3
、如果最高阶项存在且不是
1
,则去除与这个项目相乘的常数。得到的结果就是大
O
阶。
通过上面我们会发现大
O
的渐进表示法
去掉了那些对结果影响不大的项
,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况;在实际中一般情况关注的是算法的最坏运行情况。
实例:
// 请计算一下 Func1 中 ++count 语句总共执行了多少次?void Func1 ( int N ){int count = 0 ;for ( int i = 0 ; i < N ; ++ i ){for ( int j = 0 ; j < N ; ++ j ){++ count ;}}for ( int k = 0 ; k < 2 * N ; ++ k ){++ count ;}int M = 10 ;while ( M -- ){++ count ;}printf ( "%d\n" , count );}// 时间复杂度为O(N^2)
3.空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中
临时占用存储空间大小的量度
。
空间复杂度不是程序占用了多少
字节
的空间,因为这个也没太大意义,
所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用
大
O
渐进表示法
。
注意:
函数运行时所需要的栈空间
(
存储参数、局部变量、一些寄存器信息等
)
在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例:
// 计算 BubbleSort 的空间复杂度?void BubbleSort ( int* a , int n ){assert ( a );for ( size_t end = n ; end > 0 ; -- end ){int exchange = 0 ;for ( size_t i = 1 ; i < end ; ++ i ){if ( a [ i - 1 ] > a [ i ]){Swap ( & a [ i - 1 ], & a [ i ]);exchange = 1 ;}}}if ( exchange == 0 )break ;}//只使用了n个常数级的exchange的变量所以空间复杂度为O(1)
方法一:三步旋转法
方法二:移动数据到对应位置