数时间复杂度与空间复杂度

1.算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib ( int N )
{
        if ( N < 3 )
                return 1 ;
        return Fib ( N - 1 ) + Fib ( N - 2 );
}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?

1.2 算法的复杂度

在编写一段可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间

2.时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。
从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但我们并不需要如此精确的时间。
所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例, 算法中的基本操作的执行次数(并不是程序中while循环次数总和),为算法的时间复杂度。

2.2 O的渐进表示法

推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。
通过上面我们会发现大 O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况;在实际中一般情况关注的是算法的最坏运行情况。
实例:
// 请计算一下 Func1 ++count 语句总共执行了多少次?
void Func1 ( int N )
{
        int count = 0 ;
        for ( int i = 0 ; i < N ; ++ i )
        {
                for ( int j = 0 ; j < N ; ++ j )
                {
                        ++ count ;
                }
        }
        for ( int k = 0 ; k < 2 * N ; ++ k )
        {
                ++ count ;
        }
        int M = 10 ;
        while ( M -- )
        {
                ++ count ;
        }
        printf ( "%d\n" , count );
}
// 时间复杂度为O(N^2)

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度
空间复杂度不是程序占用了多少 字节 的空间,因为这个也没太大意义, 所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例:
// 计算 BubbleSort 的空间复杂度?
void BubbleSort ( int* a , int n )
{
        assert ( a );
        for ( size_t end = n ; end > 0 ; -- end )
        {
                int exchange = 0 ;
                for ( size_t i = 1 ; i < end ; ++ i )
                {
                        if ( a [ i - 1 ] > a [ i ])
                        {
                                Swap ( & a [ i - 1 ], & a [ i ]);
                                exchange = 1 ;
                        }
                }
        }
        if ( exchange == 0 )
                break ;
}
//只使用了n个常数级的exchange的变量所以空间复杂度为O(1)
方法一:三步旋转法
方法二:移动数据到对应位置
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>