自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 相关类相关的可视化图像总结

(2)通常使用热力图(heatmap)、圆圈图(circle plot)、**散点图矩阵(pairplot)**等形式。(1)颜色编码:通常用颜色梯度(如蓝-红、绿-红)表示数值的大小,颜色越深或越亮代表数值越高。(1)二维密度图用颜色深浅或等高线来表示二维数据点的分布密度,是点密度的平滑估计。(4)若变量维度较多,可结合筛选方法(如只画高于某阈值的相关关系)。(2)合理设置点的透明度(alpha):避免数据点重叠时遮挡信息。(4)颜色和数值直观反映变量间的相关系数(通常为皮尔逊相关系数)。

2025-06-15 17:11:32 857

原创 地理特征类相关可视化图像总结

(2)气泡大小表示数据大小:每个点的大小(气泡大小)反映该位置某个数值型属性(如人口、销售额、流量等)的大小,大小与数值成比例。​​(1)空间变形​​:通过扭曲地理区域的形状或大小,使地图面积与某类数据(如人口、GDP)成比例,而非实际地理面积。(1)基于地理位置的点图:气泡地图是以地图上的点位置表示地理实体(如城市、站点等),点的位置对应实体的地理坐标。**特点:**城市位置用气泡大小表示人口规模;**特点:**当数据点过多时,自动将邻近气泡聚合为一个“簇”,鼠标缩放时簇自动拆分,提升地图可读性。

2025-05-25 20:23:41 990

原创 数据可视化基础之实验八:数据可视化交互

通过这些实验,我不仅掌握了数据可视化的分类和技术,还学会了如何根据不同的数据特点选择合适的可视化方法,并对数据统计技术进行了对比分析。在这个过程中,会涉及到文本预处理(如分词、去除停用词等)、特征提取(比如词频统计、主题模型等方法确定文本的代表性特征)、数据转换(将文本数据转化为适合可视化的数值或结构形式)以及运用合适的可视化手段(如词云图用于展示高频词汇、柱状图呈现不同类别文本数量、折线图反映文本内容变化趋势等)来构建可视化作品,从而帮助用户更好地洞察文本数据并做出相应决策或进一步分析。

2025-05-24 16:43:07 681

原创 数据可视化基础之实验六:文本数据的可视化

此外,我们还尝试构造文本指纹,通过提取文本的特征并编码,为每篇文本生成了独特的标识符,这不仅加深了我们对文本特征提取的理解,也为后续的文本分析和管理提供了新的思路。文本数据可视化实验原理主要是利用数据处理与分析技术对文本数据进行加工,提取其中的关键信息、特征及模式等,然后借助可视化工具或软件,将这些经过处理的文本信息以直观的图形、图像、图表等视觉形式呈现出来,使人们能够更清晰、高效地理解文本数据所蕴含的内容、规律以及相互关系等。对比两个文献的指纹,将原来的文献进行修改,然后保存,再进行对比。

2025-05-12 20:49:16 659

原创 时间趋势类相关可视化图像总结

河流图(Streamgraph)是一种动态且富有表现力的时间趋势数据可视化图形,通常用于展示多个变量随时间的变化,特别是用于表现时间序列数据中的不同部分或类别的变化情况。(2)大规模数据的简洁展示:当需要展示多个时间序列的数据时(如多个传感器的数据、不同地区的销售数据等),地平线图能够在一个图表中清晰地对比多个数据系列。(2)流线平滑:河流图的流线通常是平滑的,通过曲线连接不同时间点的数据值,而不是简单的直线或阶梯图,这使得它比普通堆叠区域图更具表现力和美感。

2025-05-11 21:32:42 801

原创 数据可视化基础之实验五:关系数据的可视化

其实最重要的一点,就是数据进行可视化后,呈现眼前的图表,它的意义何在。根据绘制的散点图与回归线分析结果,可以看出谋杀率(murder)与入室盗窃率(burglary)之间存在一定的正相关关系,即谋杀率较高的地区,通常入室盗窃率也相对较高。直方图是反应数据的密集程度,是数据分布范围的描述,与茎叶图类似,但是不会具体到某一个值,是一个整体分布的描述。通过本次实验,我深入理解了关系数据在大数据中的应用,关系数据能够清晰地表示实体之间的关联,为数据挖掘和分析提供了有力支持,在处理复杂数据关系时优势明显。

2025-04-28 18:54:31 1096

原创 分布类相关可视化图像总结

密度图是一种用于展示数据分布的平滑曲线图,它是通过**核密度估计(简称KDE)**方法对数据的概率密度函数进行估计,从而得出数据的平滑分布。箱线图在展示数据的上下四分位信息时,可能会忽略数据的细节,特别是对数据的尾部和中间部分的细节展示不足。简单的小提琴图展示了数据的密度分布,但是没有显示单个数据点的位置。(1)平滑曲线:密度图通过估计数据的概率密度函数,得到的是一条平滑的曲线,而不是直方图的条形。数据是多维的(例如,两个变量之间的关系)时,简单的一维密度图无法有效显示数据的联合分布。

2025-04-17 18:48:33 1974

原创 数据可视化基础之实验四:比例数据可视化

1.Pandas库的使用(1)使用pd.read_csv()函数读取CSV文件,将数据加载到Pandas的DataFrame中。(2)使用pd.merge()函数对多个DataFrame进行合并,通过指定on参数来选择合并的键,how='left’表示左连接,即保留左边DataFrame的所有行,右边DataFrame中匹配的行会被合并进来,不匹配的则用NaN填充。2.数据筛选与重组(1)使用DataFrame[[‘column1’, ‘column2’]]选择特定的列。

2025-04-14 20:45:27 949

原创 局部与整体类可视化图像总结

传统的韦恩图主要是静态图形,显示的是集合的交集、并集等,但当涉及到多个集合或更复杂的集合关系时,静态的图可能显得非常拥挤和不清晰。它以节点和流线的形式展示从整体到局部的分布路径,流线的宽度表示数据流量大小,能够清晰直观地展示整体如何分解为多个部分,以及各部分之间的关系。结合了热力图和环形图的优势,环形的每个部分根据数据的大小通过不同的颜色进行编码,形成热力图效果。(3)高效空间利用:相比于传统的堆积条形图,圆堆积图能够在较小的空间内展示更多的数据,特别是展示各个类别的占比时更具视觉效果。

2025-04-06 19:39:37 1224

原创 数据可视化基础之实验三:时间数据可视化

通过本次实验,我掌握了时间数据在大数据中的应用,包括时间序列分析、趋势预测、异常检测和模式识别等。时间数据的可视化是分析的关键环节,通过选择合适的图表(如堆叠柱形图、折线图和堆积面积图),可以直观地展示数据的变化趋势、类别占比以及部分与整体的关系。在实验中,我利用Python编程实现了堆叠柱形图、折线图和堆积面积图的可视化,通过Matplotlib和Seaborn等库,成功展示了时间数据的动态变化和类别分布特征。

2025-03-31 22:13:57 941

原创 比较与排序类可视化图像总结

柱状图、环形柱状图、子弹图、哑铃图、雷达图和平行坐标图是数据分析中常用的可视化工具,各自具有独特的特点和适用场景。(1)柱状图通过柱子的高度直观地展示数据间的比较关系,适用于展示离散的分类数据,可定制性强且组合灵活。(2)环形柱状图结合了环形图和柱状图的特点,能够展示数据的构成比例和数值大小,适用于展示具有层次结构的数据。(3)子弹图将目标值、实际值和预测值集成在一起,直观地展示数据与目标之间的关系,适用于绩效评估和销售目标监控。

2025-03-11 23:19:28 671

原创 数据可视化基础实验二之D3数据可视化基础

D3 总共提供了12个布局:饼状图(Pie)、力导向图(Force)、弦图(Chord)、树状图(Tree)、集群图(Cluster)、捆图(Bundle)、打包图(Pack)、直方图(Histogram)、分区图(Partition)、堆栈图(Stack)、矩阵树图(Treemap)、层级图(Hierarchy)。D3会自动对两种颜色(红色和铁蓝色)之间的颜色值(RGB值)进行插值计算,得到过渡用的颜色值。on()的第一个参数是监听的事件,第二个参数是监听到事件后响应的内容,第二个参数是一个函数。

2025-03-07 23:11:40 1989

原创 数据可视化基础之实验一:Tableau数据可视化入门

通过本次实验,我深入学习了 Tableau 的使用方法,并成功利用该软件对 Excel 中的数据进行了基本可视化。在熟悉 Tableau Desktop 的过程中,我掌握了其界面布局、数据连接、字段操作等基础功能。让我深刻体会到 Tableau 在数据处理和展示方面的强大优势,为今后的数据分析工作提供了有力工具。

2025-03-05 20:01:59 2109 1

61 出租车计费.zip

61 出租车计费.zip

2023-05-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除