Range Sorting (Hard Version)

1 篇文章 0 订阅
1 篇文章 1 订阅

Range Sorting (Hard Version)

题意:

给出一个数组,对所有子数组,找到其中的非升序区间r,l。其花费为r - l。求数组a的总花费。
hard范围变成了3e5,不能像easy题那样暴力了。

思路:

先初始化答案,即对于每个i,ans += (i - 1) * ((i - 1) + 1) / 2。
即等差数列求和,把所有合法不合法的花费都加起来,后面再把合法的减去。合法即升序,不合法为非升序。
随后对于每个位置i,找到它前面的合法区间和后面的合法区间,ans减去前面的合法区间*后面的合法区间。
这题思路还是一样,但是找合法区间得换一种方法,因为暴力会超时。
至于每个位置后面的合法区间,可以用r数组代替,可以用单调栈的方法先预处理好r数组。
对于前面的合法区间可以用单调栈先找到区间的右端点,然后再用二进制倍增的思想找到左断点。
其中tmi[k][i]表示以i为右端点,长度为2^k的区间的最大值。
具体操作看代码。

代码:

/*************************************************************************
  > File Name: d2.cpp
  > Author: Beans
  > Mail: 3112748286@qq.com 
  > Created Time: 2023/5/15 11:38:39
 ************************************************************************/

#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#define int long long
#define endl '\n'

using namespace std;

const int maxn = 3e5 + 7;
const int ML = 19;

int t, n, a[maxn];

void solve(){

    cin >> n; a[n + 1] = 0;
    int ans = 0;
    vector<vector<int>> tmi(ML, vector<int>(n + 1));
    for(int i = 1; i <= n; i ++ )   cin >> a[i], ans += (i - 1) * ((i - 1) + 1) / 2, tmi[0][i] = a[i];
    vector<int> s;
    s.push_back(n + 1);
    vector<int> r(n + 1);
    for(int i = n; i >= 1; i -- ){

        while(s.size() && a[s.back()] > a[i])
            s.pop_back();
        r[i] = s.back();
        s.push_back(i);
    }
    for(int k = 1; k < ML; k ++ )
        for(int i = 1 << k; i <= n; i ++ )
            tmi[k][i] = max(tmi[k - 1][i], tmi[k - 1][i - (1 << (k - 1))]);
    s.clear();
    s.push_back(0);
    for(int i = 1; i <= n; i ++ ){

        while(s.size() && a[s.back()] > a[i])
            s.pop_back();
        int j = s.back();
        for(int k = ML - 1; k >= 0; k -- )
            if(j >= (1 << k) && tmi[k][j] < a[i])
                j -= (1 << k);
        ans -= (r[i] - i) * (s.back() - j);
        s.push_back(i);
    }
    cout << ans << endl;
}

signed main(){

    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    cin >> t;
    while(t -- )
        solve();
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

方哲Beans

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值