02 sklearn 基础操作笔记

本文介绍了如何使用sklearn的make_blobs函数生成分类或聚类数据集,以及MinMaxScaler和MaxAbsScaler两种数据缩放方法在sklearn.preprocessing中的应用。通过实例演示了如何调整数据范围和复制选项。
摘要由CSDN通过智能技术生成

生成分类数据集或者聚类数据集–make_blobs

一、make_blobs()的参数

make_blobs() 是 sklearn.datasets中的一个函数

主要是产生聚类数据集
1.n_features表示每一个样本有多少特征值
2.n_samples表示样本的个数
3.centers是聚类中心点的个数,可以理解为label的种类数
4.random_state是随机种子,可以固定生成的数据
5.cluster_std设置每个类别的方差

#导入数据生成器
from sklearn.datasets import make_blobs
data,label = make_blobs(n_features=2,n_samples=100,centers=3,random_state=3,cluster_std=[0.8,2,5])

在这里插入图片描述

#生成样本数为200,分类为2的数据集
data = make_blobs(n_samples = 200,centers = 2,random_state = 8)
print(data)

在这里插入图片描述

#分离自变量与因变量
X,y = data

#数据可视化
import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter(X[:,0],X[:,1],c = y,cmap = plt.cm.spring,edgecolors = 'k')

在这里插入图片描述

二、sklearn.preprocessing.MinMaxScaler和sklearn.preprocessing.MaxAbsScaler的区别

1.class sklearn.preprocessing.MinMaxScaler(feature_range = (0,1),copy = True)
将数据缩放至指定的范围内
2.class sklearn.preprocessing.MaxAbsScaler(copy = True)
将数据的最大值缩放至1

#导入iris鸢尾花数据集
from sklearn.datasets import load_iris
iris = load_iris()

#导入boston数据集
from sklearn.datasets import load_boston
boston = load_boston()

在这里插入图片描述

#将boston数据集变换到(10,100)的范围内
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler(feature_range = (10,100))
mms.fit(boston.data)
boston_mms = mms.transform(boston.data)
boston.data
boston_mms.data

在这里插入图片描述

mms2 = MinMaxScaler(feature_range = (10,100),copy=False)
mms2.fit_transform(boston.data)

在这里插入图片描述

from sklearn.preprocessing import MaxAbsScaler
mas = MaxAbsScaler()
mas.fit_transform(boston.data)
boston.data

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值