MARCOS方法

 def fit(self,data,weight=1):
        '''
        通过检测评价对象与最优解、最劣解的距离来进行排序;若评价对象最靠近最优解同时又最远离最劣解,则为最好;
        否则不为最优。其中最优解的各指标值都达到各评价指标的最优值。最劣解的各指标值都达到各评价指标的最差值。
        方案排序的规则是把各备选方案与理想解和负理想解做比较,若其中有一个方案最接近理想解,而同时又远离负理想解,
        则该方案是备选方案中最好的方案。

        Parameters
        ----------
        data : TYPE  nparray
            DESCRIPTION.  导入原始数据组成的数组
        method : TYPE, optional
            DESCRIPTION. 默认值method=0

        Returns
        -------
        C : TYPE nparray 
            DESCRIPTION.  评价对象与最优方案的接近程度

        '''
        answer=int(input("是否需要在正向化处理,需要请属于1,不需要请输入0: "))
        if answer==1:
            columns=list(input("需要正向化的列,如 [1,2,3]表示需要正向化的是第1-3列: "))
            columns_temp=[]
            #去除列表columns中的‘,’
            for i in range(len(columns)):
                if i%2!=0:
                    columns_temp.append(int(columns[i])-1)
            
            types=input("需要正向化的列的类型是什么?1:极小转极大,2:中间转极大,3:区间转极大,\
                        如[1,2,3]表示需要正向化的列分别是极小转极大、中间转极大和区间转极大:")
            types_temp=[]
            #去除列表types中的‘[],’
            for i in range(len(types)):
                if i%2!=0:
                    types_temp.append(int(types[i]))
             
            for i in range(len(columns_temp)):      
                if types_temp[i]==1:
                   data[:,columns_temp[i]]=self.positive_processing(data[:,columns_temp[i]],1)
                elif types_temp[i]==2:
                   data[:,columns_temp[i]]=self.positive_processing(data[:,columns_temp[i]],2)
                else:
                   data[:,columns_temp[i]]=self.positive_processing(data[:,columns_temp[i]],3) 
        
        #无量纲化
        data=self.dimensionless_processing(data)
        #加权矩阵
        data=data*weight
       
        #正理想解
        pis=data.max(axis=0)
        #负理想解
        nis=data.min(axis=0)
        data=np.vstack((nis,data))
        data=np.vstack((data,pis))
        #与正理想解的效度
        eps=1e-6
        k_plus=data.sum(axis=1)/(data[-1,:].sum(axis=0))
        #与负理想解的效用度
        #print(k_plus)
        k_minus=data.sum(axis=1)/(data[0,:].sum(axis=0))
        #与正理想解的效函数
       # print(k_minus)
        k_plus_func=k_minus/(k_plus+k_minus)
        print((1-k_plus_func)/k_plus_func)
        #与负理想解的效用函数
        k_minus_func=k_plus/(k_plus+k_minus)
        print((1-k_minus_func)/k_minus_func)
        #评价对象的效用函数
        k_func=(k_plus+k_minus)/(1+(1-k_plus_func)/(k_plus_func)+(1-k_minus_func)/(k_minus_func))
        
        a=data[-1,:].sum(axis=0)+data[0,:].sum(axis=0)
        b=(data[-1,:].sum(axis=0))**2+(data[0,:].sum(axis=0))**2+data[0,:].sum(axis=0)*data[-1,:].sum(axis=0)
        c=data.sum(axis=1)*a/b
        print(c)
        return k_func    

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值