def fit(self,data,weight=1):
'''
通过检测评价对象与最优解、最劣解的距离来进行排序;若评价对象最靠近最优解同时又最远离最劣解,则为最好;
否则不为最优。其中最优解的各指标值都达到各评价指标的最优值。最劣解的各指标值都达到各评价指标的最差值。
方案排序的规则是把各备选方案与理想解和负理想解做比较,若其中有一个方案最接近理想解,而同时又远离负理想解,
则该方案是备选方案中最好的方案。
Parameters
----------
data : TYPE nparray
DESCRIPTION. 导入原始数据组成的数组
method : TYPE, optional
DESCRIPTION. 默认值method=0
Returns
-------
C : TYPE nparray
DESCRIPTION. 评价对象与最优方案的接近程度
'''
answer=int(input("是否需要在正向化处理,需要请属于1,不需要请输入0: "))
if answer==1:
columns=list(input("需要正向化的列,如 [1,2,3]表示需要正向化的是第1-3列: "))
columns_temp=[]
#去除列表columns中的‘,’
for i in range(len(columns)):
if i%2!=0:
columns_temp.append(int(columns[i])-1)
types=input("需要正向化的列的类型是什么?1:极小转极大,2:中间转极大,3:区间转极大,\
如[1,2,3]表示需要正向化的列分别是极小转极大、中间转极大和区间转极大:")
types_temp=[]
#去除列表types中的‘[],’
for i in range(len(types)):
if i%2!=0:
types_temp.append(int(types[i]))
for i in range(len(columns_temp)):
if types_temp[i]==1:
data[:,columns_temp[i]]=self.positive_processing(data[:,columns_temp[i]],1)
elif types_temp[i]==2:
data[:,columns_temp[i]]=self.positive_processing(data[:,columns_temp[i]],2)
else:
data[:,columns_temp[i]]=self.positive_processing(data[:,columns_temp[i]],3)
#无量纲化
data=self.dimensionless_processing(data)
#加权矩阵
data=data*weight
#正理想解
pis=data.max(axis=0)
#负理想解
nis=data.min(axis=0)
data=np.vstack((nis,data))
data=np.vstack((data,pis))
#与正理想解的效度
eps=1e-6
k_plus=data.sum(axis=1)/(data[-1,:].sum(axis=0))
#与负理想解的效用度
#print(k_plus)
k_minus=data.sum(axis=1)/(data[0,:].sum(axis=0))
#与正理想解的效函数
# print(k_minus)
k_plus_func=k_minus/(k_plus+k_minus)
print((1-k_plus_func)/k_plus_func)
#与负理想解的效用函数
k_minus_func=k_plus/(k_plus+k_minus)
print((1-k_minus_func)/k_minus_func)
#评价对象的效用函数
k_func=(k_plus+k_minus)/(1+(1-k_plus_func)/(k_plus_func)+(1-k_minus_func)/(k_minus_func))
a=data[-1,:].sum(axis=0)+data[0,:].sum(axis=0)
b=(data[-1,:].sum(axis=0))**2+(data[0,:].sum(axis=0))**2+data[0,:].sum(axis=0)*data[-1,:].sum(axis=0)
c=data.sum(axis=1)*a/b
print(c)
return k_func
MARCOS方法
最新推荐文章于 2024-11-06 21:49:29 发布