作为一个ai与csdn小白,第三次发文章进行打卡,无比激动和紧张,不知道该说些什么,如有任何问题望各位大佬海涵,多多指导,我虚心接受各位的建议。
前言+闲聊两句
首先非常感谢Datawhale官方提供的代码,还有阿里云提供的免费算力体验时长,能让一个小白来学习ai相关的知识。
这次在老师的建议之下,暂时跳过理论课的学习,开始了实践任务。也不算一无所知,之前也学习过类似的知识,例如卷积神经网络的基本概念,之前也跟着教程自己敲过卷积网络的代码,希望能在这次的实践中收获更多的东西。
学习内容
这次完成的任务是通过卷积神经网络完成十种食物分类的工作。
先看一下模型结构吧!
神经网络并不复杂,如果把卷积层,Relu激活函数,池化层看作一组的话,很明显程序上一共有五组,最后在更了一个全连接神经网络。
Relu激活函数:
这是一个比较经典的激活函数,它确实比较有效,对于它的详细解读,可以看以下的文章:
深入理解ReLU函数(ReLU函数的可解释性)-CSDN博客
谈谈神经网络中的非线性激活函数——ReLu函数 (zhihu.com)
除了整个模型的结构,这个程序最吸引我的一点就是可以可视化的展现最后的分类结果:
如图可见分类的效果可以说是非常的不好,所以我去查看了一下训练的情况
好家伙,最后这么大的loss可见效果还有很大的提升空间,那就去改改训练参数再去训练一下吧。
上面是原先的训练参数。
这是更改后的,批量大小,训练轮数,学习率,权重衰减均有改动。
让训练数据飞一会儿。。。
训练完的结果:
还是有提升空间的(为啥我改动参数之后,进度条就没有颜色了呢)
看看最后的可视化结果:
感觉有点改进但还是有点乱,打算再改动一下试试,结果下次再更新吧
最后的闲言碎语
这次又算是截止时间才开始的打卡,客观条件说事情确实是有些多,最近还有一些别的学习任务,但是最近每天的学习时间是有点少了,希望自己能坚持学下去吧。
各位朋友们都加油!
如果在上述引用的文章,图片和代码涉及侵权问题,请联系我删除