【数据结构】中缀表达式转后缀表达式

思路

一、初始化两个栈:运算符栈 s1 和 储存中间结果的栈 s2 ;

二、从左至右扫描中缀表达式

三、遇到操作数时,将其压入 s2

四、遇到运算符时,比较其与 s1 栈顶运算符的优先级

1.如果 s1 为空,或栈顶运算符为左括号 “(  ” ,则直接将此运算符入栈

2.否则,若优先级比栈顶运算符的高,也将运算符压入 s1

3.否则,将 s1 栈顶的运算符弹出并压到 s2 中,再次转到(四、1.)与 s1 中新的栈顶运算符相比较

五、遇到括号时:

1.如果是左括号 “(  ” ,则直接压入 s1

2.如果是右括号“   )” , 则依次弹出 s1 栈顶的运算符,并压入 s2,直到遇到左括号为止,此时将这一对括号丢弃

六、重复步骤二至五,直到表达式的最右端

七、将 s1 中剩余的运算符依次弹出并压入 s2

八、依次弹出 s2 中的元素并输出,结果的逆序即为中缀表达式对应的逆序表达式

举例

中缀表达式:1 + ( ( 2 + 3 ) * 4 ) - 5

后缀表达式:1 2 3 + 4 * + 5 -

中缀表达式转 List
//将中缀表达式转成对应的 List
public static List<String> toInfixExpressionList(String s) {
    //定义一个 List ,存放中缀表达式对应的内容
    ArrayList<String> ls = new ArrayList<>();
    int i = 0;  //这是一个指针,用于遍历中缀表达式字符串
    String str;  //做对多位数的拼接
    char c;  //每遍历到一个字符,就放入到 c
    do {
        //如果 c 是一个非数字,我需要加入到 ls
        if ((c=s.charAt(i)) < '0' || (c=s.charAt(i)) > '9') {
            ls.add("" + c);
            i++;
        } else {  //如果是一个数,需要考虑多位数
            str = "";  //先将 str 置成 ""
            while (i < s.length() && (c=s.charAt(i)) >= '0' && (c=s.charAt(i)) <= '9') {
                str += c;  //拼接
                i++;
            }
            ls.add(str);
        }
    } while (i < s.length());
    return ls;
}
中缀表达式转后缀表达式
    /*
    将中缀表达式对应的 List 转换成后缀表达式对应的 List
    即 [1,+,(,(,2,+,3,),*,4,),-,5]  =>  [1,2,3,+,4,*,+,5,-]
    */
    public static List<String> parseSuffixExpressionList(List<String> ls) {
        //定义两个栈
        Stack<String> s1 = new Stack<>();  //符号栈
        /*
        说明
        因为 s2 这个栈在整个转换过程中没有 pop 操作,后面我们还需要逆序输出
        因此使用栈结构比较麻烦,直接使用 List<String> s2
         */
        //Stack<String> s2 = new Stack<>();  //存储中间结果的栈
        List<String> s2 = new ArrayList<String>();  //储存中间结果的 List s2

        //遍历 ls
        for (String item : ls) {
            //如果是一个数,加入 s2
            if (item.matches("\\d+")) {
                s2.add(item);
            } else if (item.equals("(")) {
                s1.push(item);
            } else if (item.equals(")")) {
                while (!s1.peek().equals("(")) {
                    s2.add(s1.pop());
                }
                s1.pop();  //将 ( 弹出 s1 栈,消除小括号
            } else {
                while (s1.size() != 0 && Operation.getValue(s1.peek()) >=                 
            Operation.getValue(item)) {
                    s2.add(s1.pop());
                }
                //还需要讲 item 压入栈
                s1.push(item);
            }
        }
        while (s1.size() != 0) {
            s2.add(s1.pop());
        }
        return s2;  //注意是存放到List,因此按顺序输出就是对应的后缀表达式对应的List
    }
中缀转后缀的实现及测试
public class PolandNotation {
    public static void main(String[] args) {

        /*
        完成中缀表达式转后缀表达式
        说明
        1. 1 + ( ( 2 + 3 ) * 4 ) - 5  =>  1 2 3 + 4 * + 5 -
        2.因为直接对 str 进行操作不方便,因此先将中缀表达式转为对应的 List
           即[1,+,(,(,2,+,3,),*,4,),-,5]
        3.将中缀表达式对应的 List 转换成后缀表达式对应的 List
            即 [1,+,(,(,2,+,3,),*,4,),-,5]  =>  [1,2,3,+,4,*,+,5,-]
         */
        String expression = "1+((2+3)*4)-5";
        List<String> infixExpressionList = toInfixExpressionList(expression);
        System.out.println("中缀表达式对应的 List 是 " + infixExpressionList);
        List<String> suffixExpressionList = parseSuffixExpressionList(infixExpressionList);
        System.out.println("后缀表达式对应的 List 是 " + suffixExpressionList);

    }

    //将中缀表达式转成对应的 List
    public static List<String> toInfixExpressionList(String s) {
        //定义一个 List ,存放中缀表达式对应的内容
        ArrayList<String> ls = new ArrayList<>();
        int i = 0;  //这是一个指针,用于遍历中缀表达式字符串
        String str;  //做对多位数的拼接
        char c;  //每遍历到一个字符,就放入到 c
        do {
            //如果 c 是一个非数字,我需要加入到 ls
            if ((c=s.charAt(i)) < '0' || (c=s.charAt(i)) > '9') {
                ls.add("" + c);
                i++;
            } else {  //如果是一个数,需要考虑多位数
                str = "";  //先将 str 置成 ""
                while (i < s.length() && (c=s.charAt(i)) >= '0' && (c=s.charAt(i)) <= '9') {
                    str += c;  //拼接
                    i++;
                }
                ls.add(str);
            }
        } while (i < s.length());
        return ls;
    }

    /*
    将中缀表达式对应的 List 转换成后缀表达式对应的 List
    即 [1,+,(,(,2,+,3,),*,4,),-,5]  =>  [1,2,3,+,4,*,+,5,-]
     */
    public static List<String> parseSuffixExpressionList(List<String> ls) {
        //定义两个栈
        Stack<String> s1 = new Stack<>();  //符号栈
        /*
        说明
        因为 s2 这个栈在整个转换过程中没有 pop 操作,后面我们还需要逆序输出
        因此使用栈结构比较麻烦,直接使用 List<String> s2
         */
        //Stack<String> s2 = new Stack<>();  //存储中间结果的栈
        List<String> s2 = new ArrayList<String>();  //储存中间结果的 List s2

        //遍历 ls
        for (String item : ls) {
            //如果是一个数,加入 s2
            if (item.matches("\\d+")) {
                s2.add(item);
            } else if (item.equals("(")) {
                s1.push(item);
            } else if (item.equals(")")) {
                while (!s1.peek().equals("(")) {
                    s2.add(s1.pop());
                }
                s1.pop();  //将 ( 弹出 s1 栈,消除小括号
            } else {
                while (s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item)) {
                    s2.add(s1.pop());
                }
                //还需要讲 item 压入栈
                s1.push(item);
            }
        }
        while (s1.size() != 0) {
            s2.add(s1.pop());
        }
        return s2;  //注意是存放到List,因此按顺序输出就是对应的后缀表达式对应的List
    }


    //将一个逆波兰表达式,依次将数据和运算符放入到 ArrayList 中
    public static List<String> getListString(String suffixExpression) {
        //将 suffixExpression 分割
        String[] split = suffixExpression.split(" ");
        List<String> list = new ArrayList<>();
        for (String ele : split) {
            list.add(ele);
        }
        return list;
    }

    //完成对逆波兰表达式的运算
    /*
    1.从左至右扫描,将 3 和 4 压入堆栈
    2.遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素,3 为次顶元素),计算出 3 + 4 = 7,再将 7 入栈
    3.将 5 入栈
    4.接下来是 * 运算符,因此弹出 5 和 7,计算出 5 * 7 = 35,将 35 入栈
    5.将 6 入栈
    6.最后是 - 运算符,计算出 35 - 6 = 29,由此得出最终结果
     */
    public static int calculate(List<String> ls) {
        //创建一个栈,只需要一个栈即可
        Stack<String> stack = new Stack<>();
        //遍历 ls
        for (String item : ls) {
            //这里使用正则表达式取出数字
            if (item.matches("\\d+")) {  //匹配的是多位数
                //入栈
                stack.push(item);
            } else {
                //pop 出两个数,并运算,再入栈
                int num2 = Integer.parseInt(stack.pop());
                int num1 = Integer.parseInt(stack.pop());
                int res = 0;
                if (item.equals("+")) {
                    res = num1 + num2;
                } else if (item.equals("-")) {
                    res = num1 - num2;
                } else if (item.equals("*")) {
                    res = num1 * num2;
                } else if (item.equals("/")) {
                    res = num1 / num2;
                } else {
                    throw new RuntimeException("运算符有误");
                }
                //把 res 入栈
                stack.push("" + res);
            }
        }
        //最后留在 stack 中的数据就是运算结果
        return Integer.parseInt(stack.pop());
    }
}

//编写一个类 Operation 可以返回一个运算符对应的优先级
class Operation {
    private static int ADD = 1;
    private static int SUB = 1;
    private static int MUL = 2;
    private static int DIV = 2;

    //写一个方法,返回对应的优先级数字
    public static int getValue(String operation) {
        int result = 0;
        switch (operation) {
            case "+":
                result = ADD;
                break;
            case "-":
                result = SUB;
                break;
            case "*":
                result = MUL;
                break;
            case "/":
                result = DIV;
                break;
            default:
                System.out.println("不存在该运算符");
                break;
        }
        return result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值