思路
一、初始化两个栈:运算符栈 s1 和 储存中间结果的栈 s2 ;
二、从左至右扫描中缀表达式
三、遇到操作数时,将其压入 s2
四、遇到运算符时,比较其与 s1 栈顶运算符的优先级
1.如果 s1 为空,或栈顶运算符为左括号 “( ” ,则直接将此运算符入栈
2.否则,若优先级比栈顶运算符的高,也将运算符压入 s1
3.否则,将 s1 栈顶的运算符弹出并压到 s2 中,再次转到(四、1.)与 s1 中新的栈顶运算符相比较
五、遇到括号时:
1.如果是左括号 “( ” ,则直接压入 s1
2.如果是右括号“ )” , 则依次弹出 s1 栈顶的运算符,并压入 s2,直到遇到左括号为止,此时将这一对括号丢弃
六、重复步骤二至五,直到表达式的最右端
七、将 s1 中剩余的运算符依次弹出并压入 s2
八、依次弹出 s2 中的元素并输出,结果的逆序即为中缀表达式对应的逆序表达式
举例
中缀表达式:1 + ( ( 2 + 3 ) * 4 ) - 5
后缀表达式:1 2 3 + 4 * + 5 -
中缀表达式转 List
//将中缀表达式转成对应的 List
public static List<String> toInfixExpressionList(String s) {
//定义一个 List ,存放中缀表达式对应的内容
ArrayList<String> ls = new ArrayList<>();
int i = 0; //这是一个指针,用于遍历中缀表达式字符串
String str; //做对多位数的拼接
char c; //每遍历到一个字符,就放入到 c
do {
//如果 c 是一个非数字,我需要加入到 ls
if ((c=s.charAt(i)) < '0' || (c=s.charAt(i)) > '9') {
ls.add("" + c);
i++;
} else { //如果是一个数,需要考虑多位数
str = ""; //先将 str 置成 ""
while (i < s.length() && (c=s.charAt(i)) >= '0' && (c=s.charAt(i)) <= '9') {
str += c; //拼接
i++;
}
ls.add(str);
}
} while (i < s.length());
return ls;
}
中缀表达式转后缀表达式
/*
将中缀表达式对应的 List 转换成后缀表达式对应的 List
即 [1,+,(,(,2,+,3,),*,4,),-,5] => [1,2,3,+,4,*,+,5,-]
*/
public static List<String> parseSuffixExpressionList(List<String> ls) {
//定义两个栈
Stack<String> s1 = new Stack<>(); //符号栈
/*
说明
因为 s2 这个栈在整个转换过程中没有 pop 操作,后面我们还需要逆序输出
因此使用栈结构比较麻烦,直接使用 List<String> s2
*/
//Stack<String> s2 = new Stack<>(); //存储中间结果的栈
List<String> s2 = new ArrayList<String>(); //储存中间结果的 List s2
//遍历 ls
for (String item : ls) {
//如果是一个数,加入 s2
if (item.matches("\\d+")) {
s2.add(item);
} else if (item.equals("(")) {
s1.push(item);
} else if (item.equals(")")) {
while (!s1.peek().equals("(")) {
s2.add(s1.pop());
}
s1.pop(); //将 ( 弹出 s1 栈,消除小括号
} else {
while (s1.size() != 0 && Operation.getValue(s1.peek()) >=
Operation.getValue(item)) {
s2.add(s1.pop());
}
//还需要讲 item 压入栈
s1.push(item);
}
}
while (s1.size() != 0) {
s2.add(s1.pop());
}
return s2; //注意是存放到List,因此按顺序输出就是对应的后缀表达式对应的List
}
中缀转后缀的实现及测试
public class PolandNotation {
public static void main(String[] args) {
/*
完成中缀表达式转后缀表达式
说明
1. 1 + ( ( 2 + 3 ) * 4 ) - 5 => 1 2 3 + 4 * + 5 -
2.因为直接对 str 进行操作不方便,因此先将中缀表达式转为对应的 List
即[1,+,(,(,2,+,3,),*,4,),-,5]
3.将中缀表达式对应的 List 转换成后缀表达式对应的 List
即 [1,+,(,(,2,+,3,),*,4,),-,5] => [1,2,3,+,4,*,+,5,-]
*/
String expression = "1+((2+3)*4)-5";
List<String> infixExpressionList = toInfixExpressionList(expression);
System.out.println("中缀表达式对应的 List 是 " + infixExpressionList);
List<String> suffixExpressionList = parseSuffixExpressionList(infixExpressionList);
System.out.println("后缀表达式对应的 List 是 " + suffixExpressionList);
}
//将中缀表达式转成对应的 List
public static List<String> toInfixExpressionList(String s) {
//定义一个 List ,存放中缀表达式对应的内容
ArrayList<String> ls = new ArrayList<>();
int i = 0; //这是一个指针,用于遍历中缀表达式字符串
String str; //做对多位数的拼接
char c; //每遍历到一个字符,就放入到 c
do {
//如果 c 是一个非数字,我需要加入到 ls
if ((c=s.charAt(i)) < '0' || (c=s.charAt(i)) > '9') {
ls.add("" + c);
i++;
} else { //如果是一个数,需要考虑多位数
str = ""; //先将 str 置成 ""
while (i < s.length() && (c=s.charAt(i)) >= '0' && (c=s.charAt(i)) <= '9') {
str += c; //拼接
i++;
}
ls.add(str);
}
} while (i < s.length());
return ls;
}
/*
将中缀表达式对应的 List 转换成后缀表达式对应的 List
即 [1,+,(,(,2,+,3,),*,4,),-,5] => [1,2,3,+,4,*,+,5,-]
*/
public static List<String> parseSuffixExpressionList(List<String> ls) {
//定义两个栈
Stack<String> s1 = new Stack<>(); //符号栈
/*
说明
因为 s2 这个栈在整个转换过程中没有 pop 操作,后面我们还需要逆序输出
因此使用栈结构比较麻烦,直接使用 List<String> s2
*/
//Stack<String> s2 = new Stack<>(); //存储中间结果的栈
List<String> s2 = new ArrayList<String>(); //储存中间结果的 List s2
//遍历 ls
for (String item : ls) {
//如果是一个数,加入 s2
if (item.matches("\\d+")) {
s2.add(item);
} else if (item.equals("(")) {
s1.push(item);
} else if (item.equals(")")) {
while (!s1.peek().equals("(")) {
s2.add(s1.pop());
}
s1.pop(); //将 ( 弹出 s1 栈,消除小括号
} else {
while (s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item)) {
s2.add(s1.pop());
}
//还需要讲 item 压入栈
s1.push(item);
}
}
while (s1.size() != 0) {
s2.add(s1.pop());
}
return s2; //注意是存放到List,因此按顺序输出就是对应的后缀表达式对应的List
}
//将一个逆波兰表达式,依次将数据和运算符放入到 ArrayList 中
public static List<String> getListString(String suffixExpression) {
//将 suffixExpression 分割
String[] split = suffixExpression.split(" ");
List<String> list = new ArrayList<>();
for (String ele : split) {
list.add(ele);
}
return list;
}
//完成对逆波兰表达式的运算
/*
1.从左至右扫描,将 3 和 4 压入堆栈
2.遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素,3 为次顶元素),计算出 3 + 4 = 7,再将 7 入栈
3.将 5 入栈
4.接下来是 * 运算符,因此弹出 5 和 7,计算出 5 * 7 = 35,将 35 入栈
5.将 6 入栈
6.最后是 - 运算符,计算出 35 - 6 = 29,由此得出最终结果
*/
public static int calculate(List<String> ls) {
//创建一个栈,只需要一个栈即可
Stack<String> stack = new Stack<>();
//遍历 ls
for (String item : ls) {
//这里使用正则表达式取出数字
if (item.matches("\\d+")) { //匹配的是多位数
//入栈
stack.push(item);
} else {
//pop 出两个数,并运算,再入栈
int num2 = Integer.parseInt(stack.pop());
int num1 = Integer.parseInt(stack.pop());
int res = 0;
if (item.equals("+")) {
res = num1 + num2;
} else if (item.equals("-")) {
res = num1 - num2;
} else if (item.equals("*")) {
res = num1 * num2;
} else if (item.equals("/")) {
res = num1 / num2;
} else {
throw new RuntimeException("运算符有误");
}
//把 res 入栈
stack.push("" + res);
}
}
//最后留在 stack 中的数据就是运算结果
return Integer.parseInt(stack.pop());
}
}
//编写一个类 Operation 可以返回一个运算符对应的优先级
class Operation {
private static int ADD = 1;
private static int SUB = 1;
private static int MUL = 2;
private static int DIV = 2;
//写一个方法,返回对应的优先级数字
public static int getValue(String operation) {
int result = 0;
switch (operation) {
case "+":
result = ADD;
break;
case "-":
result = SUB;
break;
case "*":
result = MUL;
break;
case "/":
result = DIV;
break;
default:
System.out.println("不存在该运算符");
break;
}
return result;
}
}