这篇文章包括以下内容哦:
- 汉诺塔问题的定义和背景。
- 解决这个问题所需的思维和逻辑。
- 如何用代码来实现这个思维和逻辑呢?(≧∇≦)/
在学习编程的过程中,汉诺塔问题确实是一个让人头疼的难题呢!函数递归对新手来说确实有点难以理解,但是它又是编程中必不可少的一部分。
我会向大家详细介绍汉诺塔问题以及解题思路,希望能帮助大家更好地理解函数递归的相关知识哦!
汉诺塔的历史背景
汉诺塔问题,也被称为河内塔问题,是一个超级有趣的数学谜题!它起源于古老的印度。听说,在印度的一座寺庙里,有一座神奇的塔。这座塔上有三根针,开始时,有 64 64 64 个不同大小的金盘子,从大到小排列在一根针上。你知道吗?僧侣们每天都要搬动这些金盘子,但是有规定哦!他们只能将一个盘子移动到其他两根针中的一根上,而且绝对不能把大盘子放在小盘子上面。神奇的是,据说当所有的盘子都从初始针移到目标针上时,世界就会迎来末日!
在19世纪,法国的数学家爱德华·卢卡斯研究了这个问题,并找到了解决方法,这让汉诺塔问题变成了著名的计算机科学问题之一。通常,我们可以用递归的方式解决汉诺塔问题,这种方法也是许多编程语言中经典的案例之一。真是太酷了!

这样说可能还是太抽象了,我们可以以两个盘子的汉诺塔为例来进一步说明:

嘻嘻,汉诺塔的核心规则可真是有趣呢!记住两个要点哦:
- 必须把大盘子放在小盘子上面,不能搞错顺序哦!
- 每次只能移动一个盘子,别贪心哦!
我们给每个柱子取了超级可爱的编号,就是从左到右的顺序喔: A 、 B 、 C !使用 X → \rightarrow → Y 来表示把某个柱子的顶部盘子移到另一个柱子上,其中 X 代表起始柱子, Y 代表目标柱子。举个例子,可以是 A → \rightarrow → B !现在我们以两个盘子为例子,一起来看看如何移动它们吧!
-
A → \rightarrow → B
-
A → \rightarrow → C
-
B → \rightarrow → C
呀,通过简单的逻辑分析,我们已经搞定了两个盘子的汉诺塔问题啦!而且还了解了一些有关历史背景呢!接下来,让我们从特殊情况推广到一般情况,来一起解决 N 个圆盘的汉诺塔问题吧!超级有趣呢!
汉诺塔的思路解析
我们来看看三个汉诺塔问题是怎么解决的吧!

嘻嘻,把步骤拆分后,我们可以得到这七个步骤喔:
- A → C
- A → B
- C → B
- A → C
- B → A
- B → C
- A → C
看起来好复杂啊,我都有点害怕……如果是 4 4 4 个、 5 5 5 个甚至更多的盘子,那可真是难倒人呢!不过别担心,我们有个超级厉害的概念:参考系!
从上面的动图可以看出,如果我们把 A 柱最底下的那个盘子当成地面(就当它不存在啦!),那么我们实际上是在做一个由 A 柱向 B 柱移动两个盘子的汉诺塔问题(之前是由 A 柱移动向 C 柱),然后再把之前在 A 柱当成地面的那个最底层的盘子移动到 C 柱上。接着再做一个由 B 柱向 C 柱移动两个盘子的汉诺塔问题。喏,问题迎刃而解啦!
这种思考方式可以将
N
N
N 个汉诺塔问题拆分为两个
N
−
1
N-1
N−1 的汉诺塔问题再加上一个最底层的参考系移动步骤。我们将解决
N
N
N 个汉诺塔问题所需步骤数的函数定义为
f
(
n
)
f(n)
f(n),那么就有:
f
(
n
)
=
{
2
f
(
n
−
1
)
+
1
,
n
>
1
1
,
n
=
1
f(n)=\begin{cases}2f(n-1)+1,&n>1\\1,&n=1\end{cases}
f(n)={2f(n−1)+1,1,n>1n=1
根据递推公式的相关知识,我们可以得到最终结果:
f
(
n
)
=
2
n
−
1
f(n)=2^{n}-1
f(n)=2n−1
把
n
=
1
n=1
n=1 代入公式可以验证一下,发现公式是有效的!
不过,仅仅知道步骤数还不够,我们还需要知道具体的步骤。但这件事如果让人来做,那可真是费时费力呀!好在我们可以交给机器来实现代码,让它来帮我们解决问题。
汉诺塔的代码实现
首先,我们定义了一个名为 hanoiTower()
的函数来解决汉诺塔问题,那么我们需要传入哪些参数呢?考虑到这个问题涉及三个柱子以及
N
N
N 个圆盘,所以我们至少需要传入
4
4
4 个参数。但是,根据需求看起来不需要返回值呢!
所以,我们可以试试这样的定义:
void hanoiTower(int n, char x, char y, char z);
第一个参数 n
代表解决的是
N
N
N 个汉诺塔问题,而接下来的三个字符变量则表示从左到右的三个柱子。
好了,接下来就是重头戏,让我详细解释一下实现吧!
#include <math.h>
#include <stdio.h>
void hanoiTower(int n, char x, char y, char z) {
if (n > 1) {
hanoiTower(n - 1, x, z, y);
printf("%c -> %c\n", x, z);
hanoiTower(n - 1, y, x, z);
} else {
printf("%c -> %c\n", x, z);
}
}
int main(void) {
int n = 0;
char a = 'A', b = 'B', c = 'C';
scanf("%d", &n);
hanoiTower(n, a, b, c);
printf("%d\n", (int)(pow(2, n) - 1));
return 0;
}
让我简单解释一下这段代码。当
n
>
1
n > 1
n>1 时,我们会进入递归函数(因为只要
n
>
1
n > 1
n>1,问题就可以被分解成
n
=
1
n = 1
n=1 的情况)。我们来看看 if()
语句的部分,它首先会将 x 柱上的
n
−
1
n-1
n−1 个圆盘移动到 y 柱上,然后将 x 柱上最底层的圆盘移动到 z 柱上,最后将 y 柱上的
n
−
1
n-1
n−1 个圆盘移动到 z 柱上。问题解决啦!因为我有点懒,所以使用了 math.h
中的 pow()
函数来计算步骤数。需要注意的是,pow()
函数返回的是 double
类型的值,所以我们需要进行强制类型转换。
嘻嘻,以下是给你附赠的 Python 代码哦~ 🐍✨
def hanoiTower(n, x, y, z):
if n > 1:
hanoiTower(n - 1, x, z, y)
print(f"{x} -> {z}")
hanoiTower(n - 1, y, x, z)
elif n == 1:
print(f"{x} -> {z}")
if __name__ == "__main__":
n = int(input())
a, b, c = "A", "B", "C"
hanoiTower(n, a, b, c)
print(2**n - 1)
是不是没想到呢?☕ 我还有 Java 代码哦!✨
import java.util.Scanner;
public class Main {
public static void hanoiTower(int n, char x, char y, char z) {
if (n > 1) {
hanoiTower(n - 1, x, z, y);
System.out.println(x + " -> " + z);
hanoiTower(n - 1, y, x, z);
} else {
System.out.println(x + " -> " + z);
}
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
char a = 'A', b = 'B', c = 'C';
hanoiTower(n, a, b, c);
System.out.println((int) Math.pow(2, n) - 1);
}
}
当然,我们还可以用 Rust 🦀 来实现代码!
use std::io;
fn hanoi_tower(n: usize, x: char, y: char, z: char) {
if n > 1 {
hanoi_tower(n - 1, x, z, y);
println!("{} -> {}", x, z);
hanoi_tower(n - 1, y, x, z);
} else {
println!("{} -> {}", x, z);
}
}
fn main() {
let mut input = String::new();
io::stdin().read_line(&mut input).expect("Failed to read line");
let n: usize = input.trim().parse().expect("Please enter a number");
let a = 'A';
let b = 'B';
let c = 'C';
hanoi_tower(n, a, b, c);
println!("{}", 2_usize.pow(n as u32) - 1);
}
以下是输入输出结果 📊✨ :
