C++:二叉搜索树之AVL树

一、AVL树的概念

根据二叉搜索树中的内容,我们知道二叉搜索树虽然可以缩短查找的效率,但是如果数据有序或者接近有序二叉搜索树就会退化成单支树,或者退化成链表,相当与在链表中查找数据效率低下。因此,诞生了一种能够保证平衡的二叉搜索树 – AVL树,向二叉搜索树中插入节点后,通过对树中的节点进行调整,保证每个节点的左右子树之差的绝对值不超过1,这样就可以降低树的高度,从而减少平均搜索次数。

AVL树具备以下的两点性质:

  • 它的左右子树都是AVL树
  • 左右子树的高度之差(简称平衡因子)的绝对值不超1

平衡因子计算方法:abs(右子树高度 - 左子树高度)

一个二叉搜索树,如果它的高度是平衡的,那么它就是一个AVL树,如果它有n个节点,高度保持在log2N,搜索所用的时间复杂度就是O(logN)

二、AVL树节点的定义

AVL树节点的定义:

template<class K, class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf; // 平衡因子


	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};

构造函数:

强制使用默认生成的构造函数:

AVLTree() = default;

拷贝构造:

AVLTree(const AVLTree<K, V>& t)
	{
		_root = Copy(t._root);
	}

Node* Copy(Node* root)
	{

		if (root == nullptr)
		{
			return nullptr;
		}
		Node* NewRoot = new Node(root->_kv);
		NewRoot->_parent = root->_parent;
		NewRoot->_bf = root->_bf;
		NewRoot->_left = Copy(root->_left);
		NewRoot->_right = Copy(root->_right);

		return NewRoot;
	}

赋值重载:

AVLTree<K, V>& operator=(AVLTree<K, V> t)
	{
		swap(_root, t._root);
		return *this;
	}

析构函数:

~AVLTree()
	{
		Destroy(_root);
		_root = nullptr;
	}

void Destroy(Node* root)
	{
		if (root == nullptr)
			return;
		Destroy(root->_left);
		Destroy(root->_right);
		delete root;
	}

三、AVL树的插入

AVL树就是在二叉搜索树的基础上加上了平衡因子,因此AVL树也可以看成是二叉搜索树,AVL树的插入过程可以分为以下两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

分析:
插入节点会影响部分祖先节点的平衡因子,因此要进行更新平衡因子。

更新平衡因子:

是否继续向上更新祖先节点,要看parent所在子树的高度是否发生变化:

1.parent平衡因子 == 0, 说明更新前parent平衡因子为1 / -1, parent所在子树的高度不变,不需要向上更新

2.parent平衡因子 == 1 / -1, 说明更新前parent的平衡因子 == 0, 插入在任意一遍parent所在子树的高度都会变化,需要继续像上更新

3.parent的平衡因子更新前是2 / -2, 说明parent平衡因子之前是 1 / -1, 插入节点在高的子树那边, 进一步加剧了parent所在子树的不平衡, 违反了AVL树的规则,需要进行旋转出处理。

3.1AVL树的旋转

3.1.1左单旋

新节点插入较高右子树的右侧,进行左单旋:

a, b, c 子树的高度均为h

插入节点后:

a和b子树高度依旧为h, c子树变为了h + 1, 30节点的平衡因子边城了2, 60的平衡因子变为1

进行左单旋:

将b作为parent节点的右子树, 将parent节点作为右子树的左子树, 原来的右子树作为根

左单旋代码实现:

//左单旋
	void RotateL(Node* parent)
	{
		Node* SubR = parent->_right;
		Node* SubRL = SubR->_left;
		parent->_right = SubRL;
		if (SubRL)
		{
			SubRL->_parent = parent;
		}

		Node* parentP = parent->_parent;
		SubR->_left = parent;
		parent->_parent = SubR;
		if (parentP == nullptr)
		{
			_root = SubR;
			SubR->_parent = nullptr;
		}
		else
		{
			if (parentP->_left == parent)
			{
				parentP->_left = SubR;
				SubR->_parent = parentP;
			}
			else
			{
				parentP->_right = SubR;
				SubR->_parent = parentP;
			}
		}
		//更新平衡因子
		SubR->_bf = parent->_bf = 0;

	}

3.1.2右单旋

新节点插入较高左子树的左边:进行右单旋

插入前a, b, c子树高度均为h:

插入后a子树高度变为h + 1:

parent 的平衡因子变为了-2左子树不平衡,需要右单旋处理:

将subLR变为parent的左子树, parent变为subL的右子树,subL变为根节点

右单旋代码实现:

//右单旋
	void RotateR(Node* parent)
	{
		Node* SubL = parent->_left;
		Node* SubLR = SubL->_right;
		parent->_left = SubLR;
		if (SubLR)
			SubLR->_parent = parent;

		Node* parentP = parent->_parent;
		SubL->_right = parent;
		parent->_parent = SubL;

		if (parentP == nullptr)
		{
			_root = SubL;
			SubL->_parent = nullptr;
		}
		else
		{
			if (parentP->_left == parent)
			{
				parentP->_left = SubL;
				SubL->_parent = parentP;
			}
			else
			{
				parentP->_right = SubL;
				SubL->_parent = parentP;
			}
		}
		//更新平衡因子
		SubL->_bf = parent->_bf = 0;
	}

3.1.3左右双旋

新节点插入较高左子树的右侧:先进行左单旋再进行右单旋

插入之前:

插入节点后:

先对SubL进行一个左单旋:

然后对parent进行右单旋:

这样一来而二叉搜索树就恢复平衡了, 进行旋转之后我们需要对平衡因子进行更新。

先保存刚插入节点后的SubLR节点的平衡因子, 如果SubLR的平衡因子为-1那么就是插入在b下面, 平衡因子更新:parent->bf = 1;

如果SubLR的平衡因子为1那么就是插入在c下面, 平衡因子更新:SubL->bf = -1;

左右双旋代码实现:

//左右双旋
	void RotateLR(Node* parent)
	{
		Node* SubL = parent->_left;
		Node* SubLR = SubL->_right;
 		RotateL(SubL);
		RotateR(parent);
		//更新平衡因子
		int bf = SubLR->_bf;
		if (bf == 0)
		{
			SubL->_bf = 0;
			SubLR->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			SubL->_bf = -1;
			SubLR->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == -1)
		{
			SubL->_bf = 0;
			SubLR->_bf = 0;
			parent->_bf = 1;
		}
		else
		{
			assert(false);
		}
	}

3.1.4右左双旋

新节点插入较高右子树的左侧, 先右单旋再进行左单旋。

插入节点前:

插入节点后:

parent节点失衡, 先对SubR进行右单旋:

然后对parent进行左单旋:

这样二叉搜索树就恢复平衡了, 然后对平衡因子进行更新, 插入节点后先对SubRL的平衡因子进行保存,如果SubRL的平衡因子为1也就是插入到c子树上 , 那么parent->bf = -1, 如果SubRL的平衡因子为-1, 也就是插入到b子树上,parent->bf = 0, SubR->bf = 1

右左双旋代码实现:

//右左双旋
	void RotateRL(Node* parent)
	{
		Node* SubR = parent->_right;
		Node* SubRL = SubR->_left;
		RotateR(SubR);
		RotateL(parent);
		//更新平衡因子
		int bf = SubRL->_bf;
		if (bf == 0)
		{
			SubR->_bf = 0;
			SubRL->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			SubR->_bf = 0;
			SubRL->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			SubR->_bf = 1;
			SubRL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

3.1.5旋转总结

如果parent->bf == 2 / -2时,进行一下情况的旋转:

  1. parent->bf == 2, 说明parent的右子树高, 设parent的右子树的根为SubR
    • 当SubR->bf == 1时,执行左单旋
    • 当SubR->bf == -1时, 执行右左双旋
  2. paren->bf == -2, 说名parent的左子树高, 设parent左子树的根为SubL
    • 当SubL->bf == -1时, 执行右单旋
    • 当SubL->bf == 1时, 执行左右双旋

旋转完成后原parent为根的子树高度降低,已经达到平衡,不需要再向上更新。

3.2插入操作的代码实现:

代码实现:

bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			//如果是个空树就将新节点作为根节点
			_root = new Node(kv);
			return true;
		}
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}

		cur->_parent = parent;
		//更新平衡因子
		while (parent)
		{
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;
			if (parent->_bf == 0)
				break;
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				//继续向上更新
				cur = parent;
				parent = cur->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//二叉搜索树不平衡,需要旋转处理
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				
				break;
			}
			else
			{
				assert(false);
			}
		}

		return true;
	}

四、AVL树相关接口的实现

查找函数实现:

//查找函数
	Node* Find(const K& key)
	{
		if (_root == nullptr)
			return nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
				return cur;
		}

		return nullptr;
	}

中序遍历实现:

//中序遍历
	void Inorder()
	{
		_inorder(_root);
		cout << endl;
	}


     void _inorder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_inorder(root->_right);
	}

有效节点个数:

//有效节点个数
	int Size()
	{
		_Size(_root);
	}

    int _Size(Node* root)
	{
		return root == nullptr ? 0 : _Size(root->_left) + _Size(root->_right) + 1;
	}

平衡二叉树高度:

//平衡二叉树高度
	int Height()
	{
		_Height(_root);
	}

    int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}

五、AVL树的验证

AVL树是在二叉搜索树的基础上增加了平衡因子产生的, 因此验证AVL树可以分以下两步:
1.验证二叉搜索树

如果中序遍历一遍可以得到一个有序的序列,就说明是一个二叉搜索树。

2.验证平衡树

  • 每个节点子树的高度差的绝对值不超过1
  • 节点的平衡因子是否正确

验证代码实现:

void TestAVLTree()
{
	AVLTree<int, int> t;
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	for (auto e : a)
	{
		t.Insert({ e, e });
	}

	t.Inorder();
	cout << t._IsBalanceTree() << endl;
}


//中序遍历
	void Inorder()
	{
		_inorder(_root);
		cout << endl;
	}
//判断是否是平衡二叉树
	bool _IsBalanceTree()
	{
		return _IsBalanceTree(_root);
	}


void _inorder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_inorder(root->_right);
	}

int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}


bool _IsBalanceTree(Node* root)
	{
		// 空树也是AVL树
		if (nullptr == root) return true;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;//计算高度差

		if (diff != root->_bf || (diff > 1 || diff < -1))
			return false;

		return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}



结语: AVL树是一个能保证绝对平衡的二叉搜索树, 这样能过保证查询时的高效率, 时间复杂度为O(logN), 但是如果对AVL树进行一些插入修改的时候性能可能会比较差,比如插入大量数据,这样会导致旋转次数过多,时间效率变差。因此AVL树对于这个结构经常进行修改的场景不太适合, 但是如果是在对有序数据进行高效查询的场景可以考虑使用AVL树来实现,这篇博客到这里就结束了, 希望大家能通过这篇博客对AVL树有所了解。

AVL树完整代码链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凪よ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值