状态压缩DP

种类

  • 棋盘式(基于连通性)
  • 集合

原理

使用二进制的方法表示状态。

时间复杂度计算

状态数量*状态计算的计算量

例题

棋盘式

AcWing 1064. 小国王

n × n n×n n×n 的棋盘上放 k k k 个国王,国王可攻击相邻的 8 8 8 个格子,求使它们无法互相攻击的方案总数。

输入格式
共一行,包含两个整数 n n n k k k

输出格式
共一行,表示方案总数,若不能够放置则输出 0 0 0

数据范围
1 ≤ n ≤ 10 , 1≤n≤10, 1n10,
0 ≤ k ≤ n 2 0≤k≤n^2 0kn2

输入样例:

3 2

输出样例:

16

状态标识 f [ i ] [ j ] [ s ] f[i][j][s] f[i][j][s] 表示所有只摆在前 i i i 行,已经摆了 j j j 个国王,并且第 i i i 行摆放的状态是 s s s 的所有选法的数量。
注意这里国王的数量是被限制的,所以要三维数组来表示状态。

对于S:我们让每个填入的格子为 1 1 1,没有填入的为 0 0 0
在这里插入图片描述
假如填入了中间一行的两边的格子,那就标记成如上图所示,这个时候状态就为 ( 101 ) 2 (101)_2 (101)2,那么S就为二进制数对应的十进制数 5 5 5

对于每一行:

  • i i i 行内部不能有两个 1 1 1 相邻
  • i − 1 i-1 i1 行和第 i i i 行不能又相互攻击到的放法

如何判断相邻两行是合法的?
如果 S 1 S_1 S1 表示 i − 1 i-1 i1 层, S 2 S_2 S2 表示第 i i i 层的状态

  • 满足 a & b == 0,即上下没有相邻的 1 1 1
  • 满足 a | b不能有两个相邻的 1 1 1

状态计算
在判断条件之后 如何算出每一次要加上的国王的数量

有两个状态。
一个是排完了前i排,第 i i i 排状态是 S 1 S1 S1 i − 1 i-1 i1 排是 S 2 S2 S2,摆了 j j j 个国王。
一个是摆完前 i − 1 i-1 i1 排,并且前 i − 1 i-1 i1 排状态是 S 2 S2 S2,摆了 j j j 减去状态 S 1 S1 S1 里的 1 1 1 的个数(即第 i i i 排国王的数量)个国王。

所以 f [ i ] [ j ] [ s 1 ] f[i][j][s1] f[i][j][s1] 就可以由 f [ i − 1 ] [ j − c o u n t ( s 1 ) ] [ s 2 ] f[i-1][j-count(s1)][s2] f[i1][jcount(s1)][s2] 转化而来。

代码:

#include<iostream>
#include<vector>
using namespace std;
const int N = 12, M = 1 << 10, K = 110;
#define ll long long

int n, m;
vector<int>st;		//存所有合法的状态
int cnt[M];			//cnt[i]存数字i二进制状态下1的个数
vector<int>head[M];	//存哪些状态可以转移到哪些状态
ll f[N][K][M];

bool check(int st) {	//验证是否是没有相邻的1
   for (int i = 0; i < n; i++) {
   	if ((st >> i & 1) && (st >> i + 1 & 1))return false;
   }
   return true;
}

int count(int st) {	//求出二进制中1的个数
   int res = 0;
   for (int i = 0; i < n; i++)res += st >> i & 1;
   return res;
}

int main() {
   cin >> n >> m;

   //枚举所有合法的状态并记录
   for (int i = 0; i < 1 << n; i++) {
   	if (check(i)) {
   		st.push_back(i);  
   		cnt[i] = count(i);//存下对应的二进制数的1的个数
   	}
   }

   //遍历所有合法的状态
   for (int i = 0; i < st.size(); i++) {
   	for (int j = 0; j < st.size(); j++) {
   		int a = st[i], b = st[j];

   		//如果两个状态之间可以转移,记录进head里
   		if ((a & b) == 0 && check(a | b)) {
   			head[a].push_back(b);
   		}
   	}
   }

   //初始化没有摆出任何国王的方案数是1
   f[0][0][0] = 1;
   for (int i = 1; i <= n+1; i++) {//枚举到i+1行
   	for (int j = 0; j <= m; j++) {//枚举摆放

   		for (auto a : st) {	//枚举所有状态
   			for (auto b : head[a]) {	//枚举出来a能够到达的状态

   				int c = cnt[a];	//取出当前状态的1的个数

   				//如果j足够,即能够由上一层状态转移过来
   				if (j >= c) {
   					f[i][j][a] += f[i - 1][j - c][b];
   				}
   			}
   		}
   	}
   }
   
   //输出摆到n+1行并且n+1行没有摆出,这么最后就不用重新枚举取答案
   cout << f[n + 1][m][0] << endl;

   return 0;
}

AcWing 327. 玉米田

农夫约翰的土地由 M × N M×N M×N 个小方格组成,现在他要在土地里种植玉米。

非常遗憾,部分土地是不育的,无法种植。

而且,相邻的土地不能同时种植玉米,也就是说种植玉米的所有方格之间都不会有公共边缘。

现在给定土地的大小,请你求出共有多少种种植方法。

土地上什么都不种也算一种方法。

输入格式
1 1 1 行包含两个整数 M M M N N N

2.. M + 1 2..M+1 2..M+1 行:每行包含 N N N 个整数 0 0 0 1 1 1,用来描述整个土地的状况, 1 1 1 表示该块土地肥沃, 0 0 0 表示该块土地不育。

输出格式
输出总种植方法对 1 0 8 10^8 108 取模后的值。

数据范围
1 ≤ M , N ≤ 12 1≤M,N≤12 1M,N12
输入样例:

2 3
1 1 1
0 1 0

输出样例:

9

状态表示 f [ i ] [ s ] f[i][s] f[i][s] 表示已经摆完前i行,且第 i i i 行的状态是 s s s 的所有摆放方案的数量

状态计算

  • 每个状态需要满足:状态的二进制表示不能有连续的 1 1 1
  • 每两层状态之间:(a & b) == 0,即上下不能有连续的 1 1 1

假如现在有两个状态:
第一个:已经摆完前 i i i 行,并且第 i i i 行的状态是 a a a,第 i − 1 i-1 i1 行的状态是 b b b
第二个:已经摆完前 i − 1 i-1 i1 行,并且第 i − 1 i-1 i1 行的状态是 b b b

即第一个状态的方案数量就应该是第二个状态的方案数量,二者是相同的。
状态转移方程为 f [ i ] [ a ] + = f [ i − 1 ] [ b ] f[i][a] += f[i-1][b] f[i][a]+=f[i1][b]

这里对于哪里可以种哪里不能种也需要特殊的判断。
在输入的时候将每一层都变为二进制的形式,并且是不能种的地方为 1 1 1,能种的地方为 0 0 0,那么在与任何一个条件进行与运算的时候,如果算出了不为 0 0 0 的数,即结果的二进制任何数位上出现了 1 1 1 ,那么就说明 1 1 1 1 1 1 重叠,即玉米被种到了不能种的地方。

代码:

#include<iostream>
#include<vector>
using namespace std;
const int N = 14, M = 1 << 12;
const int mod = 1e8;

int n, m;
int g[N];
vector<int>st;		//存合法状态(同一层没有相邻1)
vector<int>head[M];	//存能够相互转化的状态
int f[N][M];

bool check(int st) {	//检查是否有相邻的1
	for (int i = 0; i < m; i++) {
		if ((st >> i & 1) && (st >> i + 1 & 1))return false;
	}
	return true;
}

int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		for (int j = 0; j < m; j++) {
			int t; cin >> t;

			//如果输入了0,就置为1,然后加2的j次方
			//如果输入了1,就为0
			//实际意义就是:g[i]的二进制数值代表了第i行的状态,且如果为0能放,为1则不能放
			g[i] += !t << j;
		}
	}

	for (int i = 0; i < 1 << m; i++) {	//预处理同层合法状态
		if (check(i))st.push_back(i);
	}

	for (auto i : st) {				//预处理能够转化的状态
		for (auto j : st) {
			if ((i & j) == 0)head[i].push_back(j);
		}
	}

	f[0][0] = 1;
	for (int i = 1; i <= n + 1; i++) {	//枚举层,处理到n+1层
		for (auto s : st) {			//枚举状态

			if (g[i] & s)continue;	//注意这里g[i]是二进制存的状态
			/*如果g[i]&s得到了任何不为0的数,即与运算之后得到的二进制数会有任何一个数位上为1
			* 那就说明这里是与第i层有重叠的1,即有玉米被种到了不育的土地中
			* 那么这种状态应该舍去
			*/

			for (auto b : head[s]) {//枚举能转化到的状态
				f[i][s] = (f[i][s] + f[i - 1][b]) % mod;
			}
		}
	}
	cout << f[n + 1][0];
	return 0;
}

AcWing 292. 炮兵阵地

本题是上一题的扩展,即不仅仅需要考虑前一行了,现在要考虑前两行。

司令部的将军们打算在 N×M 的网格地图上部署他们的炮兵部队。

一个 N×M 的地图由 N 行 M 列组成,地图的每一格可能是山地(用 H 表示),也可能是平原(用 P 表示),如下图。

在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:

在这里插入图片描述

如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。

图上其它白色网格均攻击不到。

从图上可见炮兵的攻击范围不受地形的影响。

现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。

输入格式
第一行包含两个由空格分割开的正整数,分别表示 N N N M M M
接下来的 N N N 行,每一行含有连续的 M M M 个字符( P P P 或者 H H H ),中间没有空格。按顺序表示地图中每一行的数据。

输出格式
仅一行,包含一个整数 K K K,表示最多能摆放的炮兵部队的数量。

数据范围
N ≤ 100 , M ≤ 10 N≤100,M≤10 N100,M10

输入样例:

5 4
PHPP
PPHH
PPPP
PHPP
PHHP

输出样例:

6

状态表示 f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k] 表示所有已经摆完前i行,且第 i − 1 i-1 i1 行的状态是 j j j,第 i i i 行的状态是 k k k 的所有摆放方案的最大数量。

状态计算
应该满足的条件:

  • 三层之间不能有相交的状态:( (a&b) | (a&c) | (b&c) ) == 0
  • 炮不能被放到山地上:( g[i - 1] & a | g[i] & b ) == 0

状态转移时,取当前状态和上一层状态转移过来能够放置数量的最大值。
f[i][a][b] = max(f[i][a][b] , f[i-1][c][a] +cnt[b])

存数据时使用滚动数组。

代码:

#include<iostream>
#include<vector>
using namespace std;
const int N = 12, M = 1 << 10;

int n, m;
int g[110];
int cnt[M];
vector<int>st;
int f[2][M][M];	//滚动数组

bool check(int st) {	//检查每一层是不是没有相邻的1
	for (int i = 0; i < m; i++) {
		if ((st >> i & 1) && ((st >> i + 1 & 1) || (st >> i + 2 & 1)))return false;
	}
	return true;
}

int count(int st) {		//计算每个数的二进制状态下有多少个1
	int res = 0;
	for (int i = 0; i < m; i++)res += st >> i & 1;
	return res;
}

int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {		
		for (int j = 0; j < m; j++) {
			char c; cin >> c;
			if (c == 'H')g[i] += 1 << j;	//H代表不能放,把这个数位置为1
		}
	}

	for (int i = 0; i < 1 << m; i++) {		//预处理记录合法状态
		if (check(i)) {
			st.push_back(i);
			cnt[i] = count(i);
		}
	}

	for (int i = 1; i <= n + 2; i++) {	//枚举行
		for(auto a : st){				//枚举i-1行状态
			for(auto b : st){			//枚举i行状态
				for(auto c : st){		//枚举i-2行状态
					if ((a & b) | (a & c) | (b & c))continue;
					//如果需要的调节均满足
					if (g[i - 1] & a | g[i] & b)continue;

					//滚动数组更新状态
					//&1之后结果只有0和1
					f[i & 1][a][b] = max(f[i & 1][a][b], f[i - 1 & 1][c][a] + cnt[b]);
				}
			}
		}
	}

	cout << f[n + 2 & 1][0][0];
	return 0;
}

集合类型

AcWing 524. 愤怒的小鸟

K i a n a Kiana Kiana 最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于  ( 0 , 0 ) (0,0) (0,0) 处,每次 K i a n a Kiana Kiana 可以用它向第一象限发射一只红色的小鸟, 小鸟们的飞行轨迹均为形如  y = a x 2 + b x y=ax^2+bx y=ax2+bx 的曲线,其中  a , b a,b a,b 是 K i a n a Kiana Kiana 指定的参数,且必须满足  a < 0 a<0 a<0

当小鸟落回地面(即  x x x 轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有  n n n 只绿色的小猪,其中第  i i i 只小猪所在的坐标为  ( x i , y i ) (x_i,y_i) (xi,yi)

如果某只小鸟的飞行轨迹经过了  ( x i ,   y i ) (x_i, y_i) (xi,yi),那么第  i i i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过  ( x i ,   y i ) (x_i, y_i) (xi,yi),那么这只小鸟飞行的全过程就不会对第  i i i 只小猪产生任何影响。

例如,若两只小猪分别位于  ( 1 , 3 ) (1,3) (1,3) 和  ( 3 , 3 ) (3,3) (3,3) K i a n a Kiana Kiana 可以选择发射一只飞行轨迹为 y = − x 2 + 4 x y=−x^2+4x y=x2+4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对 K i a n a Kiana Kiana 来说都很难,所以 K i a n a Kiana Kiana 还输入了一些神秘的指令,使得自己能更轻松地完成这个这个游戏。

这些指令将在输入格式中详述。

假设这款游戏一共有  T T T 个关卡,现在 K i a n a Kiana Kiana 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。

由于她不会算,所以希望由你告诉她。

注意:本题除 NOIP 原数据外,还包含加强数据。

输入格式
第一行包含一个正整数 T T T,表示游戏的关卡总数。

下面依次输入这 T T T 个关卡的信息。

每个关卡第一行包含两个非负整数 n , m n,m n,m,分别表示该关卡中的小猪数量和 K i a n a Kiana Kiana 输入的神秘指令类型。

接下来的 n n n 行中,第 i i i 行包含两个正实数 ( x i , y i ) (x_i,y_i) (xi,yi),表示第 i i i 只小猪坐标为 ( x i , y i ) (x_i,y_i) (xi,yi),数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果 m = 0 m=0 m=0,表示 K i a n a Kiana Kiana 输入了一个没有任何作用的指令。

如果 m = 1 m=1 m=1,则这个关卡将会满足:至多用 ⌈ n / 3 + 1 ⌉ ⌈n/3+1⌉ n/3+1 只小鸟即可消灭所有小猪。

如果 m = 2 m=2 m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 ⌊ n / 3 ⌋ ⌊n/3⌋ n/3 只小猪。

保证 1 ≤ n ≤ 18 , 0 ≤ m ≤ 2 , 0 < x i , y i < 10 1≤n≤18,0≤m≤2,0<x_i,y_i<10 1n180m20<xi,yi<10,输入中的实数均保留到小数点后两位。

上文中,符号 ⌈ c ⌉ ⌈c⌉ c ⌊ c ⌋ ⌊c⌋ c 分别表示对 c c c 向上取整和向下取整,例如 : ⌈ 2.1 ⌉ = ⌈ 2.9 ⌉ = ⌈ 3.0 ⌉ = ⌊ 3.0 ⌋ = ⌊ 3.1 ⌋ = ⌊ 3.9 ⌋ = 3 ⌈2.1⌉=⌈2.9⌉=⌈3.0⌉=⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3 2.1=2.9=3.0=3.0=3.1=3.9=3

输出格式
对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。

输入样例:

2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00

输出样例:

1
1

如果想要保证能够用最少的小鸟,那么就是要求最少的抛物线穿过最多小猪的数量。
那么本题就是一种重复覆盖问题,即我们需要用最少的行去覆盖最多的列。
也可以说要用最少的抛物线去覆盖最多的状态。

那么就使得 f [ i ] f[i] f[i] 表示能够覆盖到 i i i 状态的最小抛物线数量。

在我们确定了一个抛物线之后去找到其中的没有被覆盖的那一列,之后在保证状态能够覆盖这一列的基础上去枚举其他状态,在当前抛物线最优的情况下就更新为当前抛物线的结果,否则保留其他状态原有的抛物线。

对于本题抛物线,我们仅需求出两点就可以确定出抛物线的方程。

如果我们已经确定了两点 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1,y_1) , (x_2,y_2) (x1,y1),(x2,y2)
那么就可得方程: { a x 1 2 + b = y 1 a x 2 2 + b = y 2 \begin{cases}{ax_1}^2 + b = y_1\\{ax_2}^2 + b = y_2\\\end{cases} {ax12+b=y1ax22+b=y2
如果我们进行以下操作:
{ a x 1 + b = y 1 x 1 a x 2 + b = y 2 x 2 \begin{cases}ax_1 + b = \frac{y_1}{x_1}\\ ax_2 + b = \frac{y_2}{x_2}\\ \end{cases} {ax1+b=x1y1ax2+b=x2y2

使得两式相减得到:
a ∗ ( x 1 − x 2 ) = y 1 x 1 − y 2 x 2 a*(x_1 - x_2) = \frac{y_1}{x_1} - \frac{y_2}{x_2} a(x1x2)=x1y1x2y2

那么我们就能够得到方程未知量关于自变量的关系:
a = y 1 x 1 − y 2 x 2 x 1 − x 2 a = \frac{ \frac{y_1}{x_1} - \frac{y_2}{x_2} }{ x_1 - x_2 } a=x1x2x1y1x2y2
b = y 1 x 1 − a x 1 b = \frac{y_1}{x_1} - ax_1 b=x1y1ax1

代码:

#include<cstring>
#include<iostream>
using namespace std;

const int N = 18, M = 1 << 18;
const double eps = 1e-8;
#define pdd pair<double,double>
#define x first
#define y second

int n, m;
pdd q[N];		//存点
int path[N][N];	//存抛物线 
int f[M];		//f[i]代表当前已经覆盖的列是i的时候的最小行数

bool com(double a, double b) {	//小数比较
	if (abs(a - b) < eps)return 0;
	if (a < b)return -1;
	return 1;
}

int main() {
	int t; cin >> t;
	while (t--) {
		cin >> n >> m;
		for (int i = 0; i < n; i++)cin >> q[i].x >> q[i].y;
		memset(path, 0, sizeof path);

		for (int i = 0; i < n; i++) {
			path[i][i] = 1 << i;	//如果只覆盖一个点,那么就先让这个抛物线变为只覆盖i自己

			for (int j = 0; j < n; j++) {
				double x1 = q[i].x, y1 = q[i].y;	//取出元素
				double x2 = q[j].x, y2 = q[j].y;

				if (!com(x1, x2))continue;	//如果相等就跳过

				//公式求
				double a = (y1 / x1 - y2 / x2) / (x1 - x2);
				double b = y1 / x1 - a * x1;

				if (a >= 0)continue;	//遇见a大于等于0的情况也跳过

				int st = 0;	//查看能够覆盖多少点
				for (int k = 0; k < n; k++) {
					double xx = q[k].x, yy = q[k].y;//取出所有点

					//没有能够覆盖到的点就在二进制数位上标记为1
					if (!com(a * xx * xx + b * xx, yy))st += 1 << k;
				}
				path[i][j] = st;//队列中i,j下标对应的点能够确认的抛物线存入path里
			}
		}

		memset(f, 0x3f, sizeof f);

		f[0] = 0;

		//i不能够包含全是1的情况,如果已经覆盖了全部列,就直接跳出
		//枚举所有状态
		for (int i = 0; i + 1 < 1 << n; i++) {
			int xx = 0;

			for (int j = 0; j < n; j++) {//找i状态中没有被覆盖的列
				if ((i >> j & 1) == 0) {
					xx = j;
					break;
				}
			}

			//枚举所有能覆盖到x的抛物线
			for (int j = 0; j < n; j++) {
				//首先xx保证被覆盖,所以或运算之后某些数位一定是被保证了是与path[xx][j]相同的
				//在此基础上去枚举其他状态
				//在这里i | path[xx][j]代表了能够覆盖上xx的某个状态,不一定是哪个状态
				//f[i]+1是代表直接加上一个能过xx点的抛物线
				f[i | path[xx][j]] = min(f[i | path[xx][j]], f[i] + 1);
			}

		}
		cout << f[(1 << n) - 1] << endl;//即输出全部列被覆盖的情况
	}

	return 0;
}

基于汉密尔顿路径问题

AcWing 91. 最短Hamilton路径(初始模型题)

给定一张 n n n 个点的带权无向图,点从 0 0 0 n − 1 n−1 n1 标号,求起点 0 0 0 到终点 n − 1 n−1 n1 的最短 Hamilton 路径。

Hamilton 路径的定义是从 0 0 0 n − 1 n−1 n1 不重不漏地经过每个点恰好一次。

输入格式
第一行输入整数 n n n

接下来 n n n 行每行 n n n 个整数,其中第 i i i 行第 j j j 个整数表示点 i i i j j j 的距离(记为 a [ i , j ] a[i,j] a[i,j])。

对于任意的 x , y , z x,y,z x,y,z,数据保证 a [ x , x ] = 0 , a [ x , y ] = a [ y , x ] 并且 a [ x , y ] + a [ y , z ] ≥ a [ x , z ] a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]≥a[x,z] a[x,x]=0a[x,y]=a[y,x]并且a[x,y]+a[y,z]a[x,z]

输出格式
输出一个整数,表示最短 Hamilton 路径的长度。

数据范围
1 ≤ n ≤ 20 1≤n≤20 1n20
0 ≤ a [ i , j ] ≤ 1 0 7 0≤a[i,j]≤10^7 0a[i,j]107

输入样例:

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0

输出样例:

18

具体解析看这里

#include<iostream>
#include<cstring>
using namespace std;
const int N = 20,M = 1 << N;

int f[M][N];
int a[N][N];
int n;

int main(){
    cin >> n;
    for(int i = 0;i < n;i++){
        for(int j = 0;j < n;j++){
            cin >> a[i][j];
        }
    }
    memset(f,0x3f,sizeof f);
    f[1][0] = 0;
    for(int i = 0;i < 1 << n;i++){
        for(int j = 0;j < n;j++){
            if(i >> j & 1){
                for(int k = 0;k < n;k++){
                    if(i - (1 << j) >> k & 1){
                        f[i][j] = min(f[i][j],f[i - (1 << j)][k] + a[j][k]);
                    }
                }
            }
        }
    }
    cout << f[(1 << n) - 1][n-1];
    
    return 0;
}

AcWing 731. 毕业旅行问题

小明目前在做一份毕业旅行的规划。

打算从北京出发,分别去若干个城市,然后再回到北京,每个城市之间均乘坐高铁,且每个城市只去一次。

由于经费有限,小明希望能够通过合理的路线安排尽可能的省些路上的花销。

给定一组城市和每对城市之间的火车票的价钱,找到每个城市只访问一次并返回起点的最小车费花销。

注意:北京为 1 1 1 号城市。

输入格式
第一行包含一个正整数 n n n,表示城市个数。

接下来输入一个 n n n n n n 列的矩阵,表示城市间的车票价钱。

输出格式
输出一个整数,表示最小车费花销。

数据范围
1 < n ≤ 20 1<n≤20 1<n20,包括北京车票价格均不超过 1000 1000 1000 元。

输入样例:

4
0 2 6 5
2 0 4 4
6 4 0 2
5 4 2 0

输出样例:

13

说明
4 4 4 个城市,城市 1 1 1 和城市 1 1 1 的车费为 0 0 0,城市 1 1 1 和城市 2 2 2 之间的车费为 2 2 2,城市 1 1 1 和城市 3 3 3 之间的车费为 6 6 6,城市 1 1 1 和城市 4 4 4 之间的车费为 5 5 5,以此类推。

假设任意两个城市之间均有单程票可买,且价格均在 1000 1000 1000 元以内,无需考虑极端情况。


基本上算是汉密尔顿路径的裸题,前面步骤全部都和汉密尔顿路径一样,只有最终需要达到的状态不同。

在基本的汉密尔顿路径问题中,我们需要达到的状态是 ( 1 < < n ) − 1 (1 << n) - 1 (1<<n)1 即每一个数位都为 1 1 1 的情况,而在这道题中还需要回到起点,故直接在最后进行枚举到达的最后一个点加上从那个点到达起点的距离中的最小值即可。

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 20, M = 1 << N;

int n;
int f[M][N];
int a[N][N];

int main() {
	cin >> n;
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			cin >> a[i][j];
		}
	}

	memset(f, 0x3f, sizeof f);
	f[1][0] = 0;
	for (int i = 0; i < 1 << n; i++) {
		for (int j = 0; j < n; j++) {
			if (i >> j & 1) {
				for (int k = 0; k < n; k++) {
					if (i - (1 << j) >> k & 1) {
						f[i][j] = min(f[i][j], f[i - (1 << j)][k] + a[j][k]);
					}
				}
			}
		}
	}
	
	int res = 0x3f3f3f3f;
	for (int i = 0; i < n; i++) {
		res = min(res, f[(1 << n) - 1][i] + a[i][0]);
	}
	cout << res;
	return 0;
}
  • 29
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值