gcd与lcm:

取模运算的运算法则

(a+b)%p=(a%p+b%p)%p

(a-b)%p=(a%p-b%p)%p

(a*b)%p=(a%p*b%p)%p

(a^b)%p=((a%p)^b)%p

欧几里得算法(辗转相除法)

欧几里得算法(辗转相除法)是求两个正整数的最大公约数的一种算法。其基本思想是通过反复将两个数中较大的数替换为它们的差,直到两个数相等,此时这个相等的数就是它们的最大公约数。

代码实现

非递归:

int gcd(int a,int b)
{
    int t=a%b;
    while(t)
    {
        a=b;
        b=t;
        t=a%b;
    }
    return b;
}

递归:

int gcd(int a,int b)
{
    if(b==0)
        return a;
  return gcd(b,a%b);
}

拓展至lcm(最小公倍数)

最小公倍数可由最大公约数得到,a,b的最小公倍数记为lcm(a,b)。

lcm(a,b)a*b/gcd(a,b)

但我们一般写为lcm=a/gcd(a,b)*b,这是为了防止a*b溢出。

多个数的情况

例:求n个数的最小公倍数,所有数据的范围均在long long内。

Input
输入数据有多组,每组2行,第一行为n,表示要输入数字的个数,接下来第二行有n个正整数。
Output
输出一个数,即这n个数的最小公倍数。

#include <bits/stdc++.h>
using namespace std;
long long gcd(long long a,long long b)
{
    if(b==0)
        return a;
    return gcd(b,a%b);
}
long long lcm(long long a,long long b)
{
    return a/gcd(a,b)*b;
}
int main()
{
    int n;
    while(cin>>n)
    {
        long long res=1;
        for(int i=0;i<n;i++)
        {
            long long x;
            cin>>x;
            res=lcm(res,x);
        }
        cout<<res<<endl;
    }
    return 0;
}

代码运行结果如下:

  • 10
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值