题目描述
某大学有 n 个职员,编号为 1…n。
他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。
现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数 ri,但是呢,如果某个职员的直接上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。
所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。
输入格式
输入的第一行是一个整数 n。
第 2 到第(n+1) 行,每行一个整数,第 (i+1) 行的整数表示 i 号职员的快乐指数 ri。
第 (n+2) 到第 2n 行,每行输入一对整数 l,k,代表 k 是 l 的直接上司。
输出格式
输出一行一个整数代表最大的快乐指数。
输入输出样例
输入 #1复制
7 1 1 1 1 1 1 1 1 3 2 3 6 4 7 4 4 5 3 5
输出 #1复制
5
说明/提示
数据规模与约定
对于 100% 的数据,保证 1≤n≤6×103,−128≤ri≤127,1≤l,k≤n,且给出的关系一定是一棵树。
题目分析:
一个节点表示一个职员,如果一个节点代表的职员参加宴会,那么他的子节点就不能参加宴会;如果不参加宴会,他的子节点参不参加都行。根据DP的解题思路,定义状态:dp[i][0]表示不选择当前节点(不参加宴会)的最优解;dp[i][1] 表示选择当前节点(参加宴会)的最优解
状态转移方程有两种情况:
(1) 不选择当前节点,那么它的子节点可选可不选,取其中的最大值,即
dp[u][0]+=max(dp[v][0],dp[v][1])
(2) 选择当前节点,那么它的子节点不能选,即
dp[u][1]+=dp[v][0]
代码包括3部分:
①建树,用STLvector生成链表,建立关系树;
②树的遍历,用DFS从根节点开始进行记忆化搜索
③DP
复杂度分析:遍历每个节点,总复杂度为O(n)
代码实现:
#include<bits/stdc++.h>
using namespace std;
const int N=6005;
int val[N],dp[N][2],father[N];
vector<int> G[N];
void addedge(int from,int to)
{
G[from].push_back(to); //用邻接表建树
father[to]=from; //父子关系
}
void dfs(int u)
{
dp[u][0]=0;
dp[u][1]=val[u];
for(int v:G[u])//遍历以u为父节点的所有子节点v
{
dfs(v);
dp[u][1]+=dp[v][0];
dp[u][0]+=max(dp[v][0],dp[v][1]);
}
}
int main()
{
int n; cin>>n;
for(int i=1;i<=n;i++) cin>>val[i];
for(int i=1;i<n;i++)
{
int u,v; cin>>u>>v;
addedge(v,u);
}
int t=1;
while(father[t]) t=father[t]; //查找树的根节点
dfs(t);
cout<<max(dp[t][0],dp[t][1])<<endl;
return 0;
}