洛谷 P1352 没有上司的舞会

题目描述

某大学有 n 个职员,编号为 1…n。

他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。

现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数 ri,但是呢,如果某个职员的直接上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。

所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。

输入格式

输入的第一行是一个整数 n。

第 2 到第(n+1) 行,每行一个整数,第 (i+1) 行的整数表示 i 号职员的快乐指数 ri。

第 (n+2) 到第 2n 行,每行输入一对整数 l,k,代表 k 是 l 的直接上司。

输出格式

输出一行一个整数代表最大的快乐指数。

输入输出样例

输入 #1复制

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5

输出 #1复制

5

说明/提示

数据规模与约定

对于 100% 的数据,保证 1≤n≤6×103,−128≤ri≤127,1≤l,k≤n,且给出的关系一定是一棵树。

 题目分析:

一个节点表示一个职员,如果一个节点代表的职员参加宴会,那么他的子节点就不能参加宴会;如果不参加宴会,他的子节点参不参加都行。根据DP的解题思路,定义状态:dp[i][0]表示不选择当前节点(不参加宴会)的最优解;dp[i][1] 表示选择当前节点(参加宴会)的最优解

状态转移方程有两种情况:

(1) 不选择当前节点,那么它的子节点可选可不选,取其中的最大值,即
                   dp[u][0]+=max(dp[v][0],dp[v][1])
                   
(2) 选择当前节点,那么它的子节点不能选,即
                   dp[u][1]+=dp[v][0] 

代码包括3部分:
①建树,用STLvector生成链表,建立关系树;

②树的遍历,用DFS从根节点开始进行记忆化搜索

③DP

复杂度分析:遍历每个节点,总复杂度为O(n)

代码实现:
 

#include<bits/stdc++.h>

using namespace std;

const int N=6005;

int val[N],dp[N][2],father[N];

vector<int> G[N];

void addedge(int from,int to)
{
    G[from].push_back(to);  //用邻接表建树
    father[to]=from;   //父子关系
}

void dfs(int u)
{
    dp[u][0]=0;
    dp[u][1]=val[u];
    for(int v:G[u])//遍历以u为父节点的所有子节点v
    {
        dfs(v);
        dp[u][1]+=dp[v][0];
        dp[u][0]+=max(dp[v][0],dp[v][1]);
    }
}

int main()
{
    int n; cin>>n;
    for(int i=1;i<=n;i++) cin>>val[i];
    for(int i=1;i<n;i++)
    {
        int u,v; cin>>u>>v;
        addedge(v,u);
    }
    int t=1;
    while(father[t]) t=father[t]; //查找树的根节点
    dfs(t);
    cout<<max(dp[t][0],dp[t][1])<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值