给定一个顺序存储的线性表,请设计一个函数删除所有值大于min而且小于max的元素。删除后表中剩余元素保持顺序存储,并且相对位置不能改变。
函数接口定义:
List Delete( List L, ElementType minD, ElementType maxD );
其中List
结构定义如下:
typedef int Position;
typedef struct LNode *List;
struct LNode {
ElementType Data[MAXSIZE];
Position Last; /* 保存线性表中最后一个元素在数组中的位置 */
};
L
是用户传入的一个线性表,其中ElementType
元素可以通过>、==、<进行比较;minD
和maxD
分别为待删除元素的值域的下、上界。函数Delete
应将Data[]
中所有值大于minD
而且小于maxD
的元素删除,同时保证表中剩余元素保持顺序存储,并且相对位置不变,最后返回删除后的表。
裁判测试程序样例:
#include <stdio.h>
#define MAXSIZE 20
typedef int ElementType;
typedef int Position;
typedef struct LNode *List;
struct LNode {
ElementType Data[MAXSIZE];
Position Last; /* 保存线性表中最后一个元素的位置 */
};
List ReadInput(); /* 裁判实现,细节不表。元素从下标0开始存储 */
void PrintList( List L ); /* 裁判实现,细节不表 */
List Delete( List L, ElementType minD, ElementType maxD );
int main()
{
List L;
ElementType minD, maxD;
int i;
L = ReadInput();
scanf("%d %d", &minD, &maxD);
L = Delete( L, minD, maxD );
PrintList( L );
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
4 -8 2 12 1 5 9 3 3 10
0 4
输出样例:
4 -8 12 5 9 10
解析:
有一个很重要的点就是删除这个位置的元素后,要将后面的元素都往前移,所以这个时候不能直接继续判断下一个位置的元素,因为原来被删除的这个位置被放上了从后一位置移过来的新的,没有判断过的元素,所以要再次判断这个位置的元素,也就是为什么这里要i--
AC代码:
List Delete( List L, ElementType minD, ElementType maxD ){
int i=0;
while(1){
if(i>L->Last){
break;
}
if(L->Data[i]<maxD && L->Data[i]>minD){
int j;
for(j=i;j<L->Last;j++){
L->Data[j]=L->Data[j+1];
}
L->Last--;
i--;
}
i++;
}
return L;
}