简谐运动相关知识点

简谐运动的证明

线性回复力 F= -kx 得到物体做简谐运动

单摆的小摆角振动

力矩的求法:向量的外积。
M = r × F M = r \times F M=r×F
方向:将 r r r(表示刚体到转动中心点的方向向量。其中 r r r的模等于距离 l l l 方向指向转动中心点)和 F F F移至同一端点。如果 r r r F F F成锐角,则用右手法则,大拇指方向即为 M M M的方向。
![[QQ_1725880583934.png]]

在此图中 F F F为重力,竖直向下,此时方向并不成锐角,与规定的正方向相反。故取符号,即 M = − m g l sin ⁡ θ M = -mgl\sin\theta M=mglsinθ
这样便求出了力矩的大小。
在角位移 θ \theta θ很小时,有 sin ⁡ θ = θ \sin\theta =\theta sinθ=θ
此时有 M = − m g l θ M = -mgl\theta M=mg
此时的回复力矩与角位移成正比且反向。
若不及阻力,则有 − m g l θ = M = J β = m l 2 d 2 θ d t 2 -mgl\theta =M = J \beta = m l^2 \frac{d^2\theta}{dt^2} mg=M=Jβ=ml2dt2d2θ
则有 g θ + l d 2 θ d t 2 = 0 g\theta+l\frac{d^2\theta}{dt^2} = 0 gθ+ldt2d2θ=0
d 2 θ d t 2 + l g θ = 0 \frac{d^2\theta}{dt^2} +\frac{l}{g}\theta=0 dt2d2θ+glθ=0
l g = w 2 \frac{l}{g} = w^2 gl=w2则有
w = l g w = \sqrt{\frac{l}{g}} w=gl
T = 2 π w = 2 π g l T = \frac{2 \pi}{w} = 2\pi \sqrt{\frac{g}{l}} T=w2π=2πlg

同方向同频率简谐振动合成

x 1 = A 1 cos ⁡ ( w t + ϕ 1 ) x_1 = A_1\cos(wt+ \phi_1) x1=A1cos(wt+ϕ1)
x 1 = A 2 cos ⁡ ( w t + ϕ 2 ) x_1 = A_2\cos(wt+\phi_2) x1=A2cos(wt+ϕ2)
x = x 1 + x 2 = A 1 cos ⁡ ( w t + ϕ 1 ) + A 2 cos ⁡ ( w t + ϕ 2 ) = A 1 cos ⁡ w t cos ⁡ ϕ 1 − A 1 sin ⁡ w t sin ⁡ ϕ 1 + A 2 cos ⁡ w t cos ⁡ ϕ 2 − A 2 sin ⁡ w t sin ⁡ ϕ 2 = cos ⁡ w t ( A 1 cos ⁡ ϕ 1 + A 2 cos ⁡ ϕ 2 ) − sin ⁡ w t ( A 1 sin ⁡ ϕ 1 + A 2 sin ⁡ ϕ 2 ) = A cos ⁡ ( w t + ϕ ) \begin{aligned} x&=x_1+x_2 \\ &= A_1\cos(wt+ \phi_1)+A_2\cos(wt+\phi_2)\\ &=A_1\cos wt\cos \phi_1 -A_1\sin wt \sin \phi_1 +A_2 \cos wt \cos \phi_2 -A_2\sin wt \sin \phi_2 \\ & = \cos wt (A_1\cos \phi_1 +A_2 \cos \phi_2) -\sin wt (A_1\sin \phi_1 +A_2 \sin \phi_2) \\ & = A \cos (wt+\phi) \end{aligned} x=x1+x2=A1cos(wt+ϕ1)+A2cos(wt+ϕ2)=A1coswtcosϕ1A1sinwtsinϕ1+A2coswtcosϕ2A2sinwtsinϕ2=coswt(A1cosϕ1+A2cosϕ2)sinwt(A1sinϕ1+A2sinϕ2)=Acos(wt+ϕ)
( A 1 cos ⁡ ϕ 1 + A 2 cos ⁡ ϕ 2 ) = A cos ⁡ ϕ (A_1\cos \phi_1 +A_2 \cos \phi_2) = A\cos \phi (A1cosϕ1+A2cosϕ2)=Acosϕ , ( A 1 sin ⁡ ϕ 1 + A 2 sin ⁡ ϕ 2 ) = A sin ⁡ ϕ (A_1\sin \phi_1 +A_2 \sin \phi_2) = A\sin \phi (A1sinϕ1+A2sinϕ2)=Asinϕ

则有 tan ⁡ ϕ = sin ⁡ ϕ cos ⁡ ϕ = A 1 sin ⁡ ϕ 1 + A 2 sin ⁡ ϕ 2 A 1 cos ⁡ ϕ 1 + A 2 cos ⁡ ϕ 2 \tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{A_1\sin \phi_1 +A_2 \sin \phi_2}{A_1\cos \phi_1 +A_2 \cos \phi_2} tanϕ=cosϕsinϕ=A1cosϕ1+A2cosϕ2A1sinϕ1+A2sinϕ2
A = A 1 2 cos ⁡ 2 ϕ + A 2 2 sin ⁡ 2 ϕ = ( A 1 cos ⁡ ϕ 1 + A 2 cos ⁡ ϕ 2 ) 2 + ( A 1 sin ⁡ ϕ 1 + A 2 sin ⁡ ϕ 2 ) 2 = A 1 2 cos ⁡ 2 ϕ + A 1 2 sin ⁡ 2 ϕ + A 2 cos ⁡ 2 ϕ + A 2 sin ⁡ 2 ϕ + 2 A 1 A 2 cos ⁡ ϕ 1 cos ⁡ ϕ 2 + 2 A 1 A 2 sin ⁡ ϕ 1 sin ⁡ ϕ 2 = A 1 2 + A 2 2 + 2 A 1 A 2 cos ⁡ ( ϕ 1 − ϕ 2 ) \begin{aligned} A&=\sqrt{A_1^2\cos ^2\phi + A_2^2\sin^2\phi} \\ &=\sqrt{ (A_1\cos \phi_1 +A_2 \cos \phi_2)^2 +(A_1\sin \phi_1 +A_2 \sin \phi_2)^2}\\ & = \sqrt{A_1^2\cos^2\phi+A_1^2\sin^2\phi+A_2\cos^2\phi+A_2\sin^2\phi+2A_1A_2\cos\phi_1\cos\phi_2 +2A_1A_2\sin\phi_1\sin \phi_2}\\ & = \sqrt{A_1^2 +A_2^2 +2A_1A_2 \cos(\phi_1-\phi_2)} \end{aligned} A=A12cos2ϕ+A22sin2ϕ =(A1cosϕ1+A2cosϕ2)2+(A1sinϕ1+A2sinϕ2)2 =A12cos2ϕ+A12sin2ϕ+A2cos2ϕ+A2sin2ϕ+2A1A2cosϕ1cosϕ2+2A1A2sinϕ1sinϕ2 =A12+A22+2A1A2cos(ϕ1ϕ2)
这样就可以求出合成之后的振幅和初相了。

振动的能量

当运动到端点处时,系统的动能为0,机械能全部转化为弹簧的弹性势能。由能量守恒可得,总的机械能为 1 2 k A 2 \frac{1}{2}kA^2 21kA2

除此之外,由于速度为 − A w sin ⁡ ( w t + ϕ ) -Aw\sin (wt+\phi) Awsin(wt+ϕ)
则动能为 1 2 m A 2 w 2 sin ⁡ 2 ( w t + ϕ ) \frac{1}{2}m A^2w^2\sin^2(wt+\phi) 21mA2w2sin2(wt+ϕ)
弹簧形变量为 A cos ⁡ ( w t + ϕ ) A\cos(wt+\phi) Acos(wt+ϕ)
弹簧的弹性势能为 1 2 k A 2 cos ⁡ 2 ( w t + ϕ ) \frac{1}{2}kA^2\cos^2(wt+\phi) 21kA2cos2(wt+ϕ)

由上文有 w 2 = k m w^2 = \frac{k}{m} w2=mk
E k = 1 2 k A 2 sin ⁡ 2 ( w t + ϕ ) E_k = \frac{1}{2}kA^2\sin^2(wt+\phi) Ek=21kA2sin2(wt+ϕ)
E k + E p = 1 2 k A 2 E_k + E_p=\frac{1}{2}kA^2 Ek+Ep=21kA2
故简谐运动的总能量保持不变,为 1 2 k A 2 \frac{1}{2}kA^2 21kA2

且有 T E k = 1 2 T T_{E_k}=\frac{1}{2}T TEk=21T

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值