简谐运动的证明
线性回复力 F= -kx 得到物体做简谐运动
单摆的小摆角振动
力矩的求法:向量的外积。
M
=
r
×
F
M = r \times F
M=r×F
方向:将
r
r
r(表示刚体到转动中心点的方向向量。其中
r
r
r的模等于距离
l
l
l 方向指向转动中心点)和
F
F
F移至同一端点。如果
r
r
r和
F
F
F成锐角,则用右手法则,大拇指方向即为
M
M
M的方向。
在此图中
F
F
F为重力,竖直向下,此时方向并不成锐角,与规定的正方向相反。故取符号,即
M
=
−
m
g
l
sin
θ
M = -mgl\sin\theta
M=−mglsinθ
这样便求出了力矩的大小。
在角位移
θ
\theta
θ很小时,有
sin
θ
=
θ
\sin\theta =\theta
sinθ=θ
此时有
M
=
−
m
g
l
θ
M = -mgl\theta
M=−mglθ
此时的回复力矩与角位移成正比且反向。
若不及阻力,则有
−
m
g
l
θ
=
M
=
J
β
=
m
l
2
d
2
θ
d
t
2
-mgl\theta =M = J \beta = m l^2 \frac{d^2\theta}{dt^2}
−mglθ=M=Jβ=ml2dt2d2θ
则有
g
θ
+
l
d
2
θ
d
t
2
=
0
g\theta+l\frac{d^2\theta}{dt^2} = 0
gθ+ldt2d2θ=0
d
2
θ
d
t
2
+
l
g
θ
=
0
\frac{d^2\theta}{dt^2} +\frac{l}{g}\theta=0
dt2d2θ+glθ=0
令
l
g
=
w
2
\frac{l}{g} = w^2
gl=w2则有
w
=
l
g
w = \sqrt{\frac{l}{g}}
w=gl
则
T
=
2
π
w
=
2
π
g
l
T = \frac{2 \pi}{w} = 2\pi \sqrt{\frac{g}{l}}
T=w2π=2πlg
同方向同频率简谐振动合成
x
1
=
A
1
cos
(
w
t
+
ϕ
1
)
x_1 = A_1\cos(wt+ \phi_1)
x1=A1cos(wt+ϕ1)
x
1
=
A
2
cos
(
w
t
+
ϕ
2
)
x_1 = A_2\cos(wt+\phi_2)
x1=A2cos(wt+ϕ2)
x
=
x
1
+
x
2
=
A
1
cos
(
w
t
+
ϕ
1
)
+
A
2
cos
(
w
t
+
ϕ
2
)
=
A
1
cos
w
t
cos
ϕ
1
−
A
1
sin
w
t
sin
ϕ
1
+
A
2
cos
w
t
cos
ϕ
2
−
A
2
sin
w
t
sin
ϕ
2
=
cos
w
t
(
A
1
cos
ϕ
1
+
A
2
cos
ϕ
2
)
−
sin
w
t
(
A
1
sin
ϕ
1
+
A
2
sin
ϕ
2
)
=
A
cos
(
w
t
+
ϕ
)
\begin{aligned} x&=x_1+x_2 \\ &= A_1\cos(wt+ \phi_1)+A_2\cos(wt+\phi_2)\\ &=A_1\cos wt\cos \phi_1 -A_1\sin wt \sin \phi_1 +A_2 \cos wt \cos \phi_2 -A_2\sin wt \sin \phi_2 \\ & = \cos wt (A_1\cos \phi_1 +A_2 \cos \phi_2) -\sin wt (A_1\sin \phi_1 +A_2 \sin \phi_2) \\ & = A \cos (wt+\phi) \end{aligned}
x=x1+x2=A1cos(wt+ϕ1)+A2cos(wt+ϕ2)=A1coswtcosϕ1−A1sinwtsinϕ1+A2coswtcosϕ2−A2sinwtsinϕ2=coswt(A1cosϕ1+A2cosϕ2)−sinwt(A1sinϕ1+A2sinϕ2)=Acos(wt+ϕ)
设
(
A
1
cos
ϕ
1
+
A
2
cos
ϕ
2
)
=
A
cos
ϕ
(A_1\cos \phi_1 +A_2 \cos \phi_2) = A\cos \phi
(A1cosϕ1+A2cosϕ2)=Acosϕ ,
(
A
1
sin
ϕ
1
+
A
2
sin
ϕ
2
)
=
A
sin
ϕ
(A_1\sin \phi_1 +A_2 \sin \phi_2) = A\sin \phi
(A1sinϕ1+A2sinϕ2)=Asinϕ
则有
tan
ϕ
=
sin
ϕ
cos
ϕ
=
A
1
sin
ϕ
1
+
A
2
sin
ϕ
2
A
1
cos
ϕ
1
+
A
2
cos
ϕ
2
\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{A_1\sin \phi_1 +A_2 \sin \phi_2}{A_1\cos \phi_1 +A_2 \cos \phi_2}
tanϕ=cosϕsinϕ=A1cosϕ1+A2cosϕ2A1sinϕ1+A2sinϕ2
A
=
A
1
2
cos
2
ϕ
+
A
2
2
sin
2
ϕ
=
(
A
1
cos
ϕ
1
+
A
2
cos
ϕ
2
)
2
+
(
A
1
sin
ϕ
1
+
A
2
sin
ϕ
2
)
2
=
A
1
2
cos
2
ϕ
+
A
1
2
sin
2
ϕ
+
A
2
cos
2
ϕ
+
A
2
sin
2
ϕ
+
2
A
1
A
2
cos
ϕ
1
cos
ϕ
2
+
2
A
1
A
2
sin
ϕ
1
sin
ϕ
2
=
A
1
2
+
A
2
2
+
2
A
1
A
2
cos
(
ϕ
1
−
ϕ
2
)
\begin{aligned} A&=\sqrt{A_1^2\cos ^2\phi + A_2^2\sin^2\phi} \\ &=\sqrt{ (A_1\cos \phi_1 +A_2 \cos \phi_2)^2 +(A_1\sin \phi_1 +A_2 \sin \phi_2)^2}\\ & = \sqrt{A_1^2\cos^2\phi+A_1^2\sin^2\phi+A_2\cos^2\phi+A_2\sin^2\phi+2A_1A_2\cos\phi_1\cos\phi_2 +2A_1A_2\sin\phi_1\sin \phi_2}\\ & = \sqrt{A_1^2 +A_2^2 +2A_1A_2 \cos(\phi_1-\phi_2)} \end{aligned}
A=A12cos2ϕ+A22sin2ϕ=(A1cosϕ1+A2cosϕ2)2+(A1sinϕ1+A2sinϕ2)2=A12cos2ϕ+A12sin2ϕ+A2cos2ϕ+A2sin2ϕ+2A1A2cosϕ1cosϕ2+2A1A2sinϕ1sinϕ2=A12+A22+2A1A2cos(ϕ1−ϕ2)
这样就可以求出合成之后的振幅和初相了。
振动的能量
当运动到端点处时,系统的动能为0,机械能全部转化为弹簧的弹性势能。由能量守恒可得,总的机械能为 1 2 k A 2 \frac{1}{2}kA^2 21kA2
除此之外,由于速度为
−
A
w
sin
(
w
t
+
ϕ
)
-Aw\sin (wt+\phi)
−Awsin(wt+ϕ)
则动能为
1
2
m
A
2
w
2
sin
2
(
w
t
+
ϕ
)
\frac{1}{2}m A^2w^2\sin^2(wt+\phi)
21mA2w2sin2(wt+ϕ)
弹簧形变量为
A
cos
(
w
t
+
ϕ
)
A\cos(wt+\phi)
Acos(wt+ϕ)
弹簧的弹性势能为
1
2
k
A
2
cos
2
(
w
t
+
ϕ
)
\frac{1}{2}kA^2\cos^2(wt+\phi)
21kA2cos2(wt+ϕ)
由上文有
w
2
=
k
m
w^2 = \frac{k}{m}
w2=mk
则
E
k
=
1
2
k
A
2
sin
2
(
w
t
+
ϕ
)
E_k = \frac{1}{2}kA^2\sin^2(wt+\phi)
Ek=21kA2sin2(wt+ϕ)
E
k
+
E
p
=
1
2
k
A
2
E_k + E_p=\frac{1}{2}kA^2
Ek+Ep=21kA2
故简谐运动的总能量保持不变,为
1
2
k
A
2
\frac{1}{2}kA^2
21kA2
且有 T E k = 1 2 T T_{E_k}=\frac{1}{2}T TEk=21T