级数的敛散性

级数的敛散性

级数、部分和、收敛级数和发散级数的定义:对于一个数列 U n {U_n} Un,对它的各项通过相加连接起来的表达式
U 1 + U 2 + U 3 + . . . + U n U_1+U_2+U_3+...+U_n U1+U2+U3+...+Un
称为常数项无穷级数或数项级数(简称级数)[常数项无穷级数中的常数项表示每一项都是固定的数字]
这个表达式也可以写作 ∑ n = 1 n u n \sum _{n=1} ^n {u_n} n=1nun或简单写作 ∑ u n \sum {u_n} un
前n项之和记为 S n = ∑ U n S_n = \sum{U_n} Sn=Un称为它为数项级数的第n个部分的和,也简称部分和
如果部分和 lim ⁡ n → + ∞ S n = S \lim_{n\to +\infty} S_n=S limn+Sn=S,即当 n → + ∞ n\to +\infty n+ S n S_n Sn的极限为定值,则称此数项级数为收敛级数,其和为 S S S;反之则为发散级数。

[收敛级数和发散级数的判断是该章节尤为重要的一部分。]
根据以上的概念,接下来判断一些简单数项级数的敛散性。
1)讨论等比级数(也称为几何级数) u n = a + a q + a q 2 + a q 3 + ⋯ + a q n − 1 u_n =a+aq+aq^2+aq^3+\dots+aq^{n-1} un=a+aq+aq2+aq3++aqn1的敛散性
S n = a + a q + a q 2 + a q 3 + ⋯ + a q n − 1 = a ( 1 − q n ) 1 − q S_n = a+aq+aq^2+aq^3+\dots+aq^{n-1}=\frac{a(1-q^n)}{1-q} Sn=a+aq+aq2+aq3++aqn1=1qa(1qn)
lim ⁡ n → + ∞ S n \lim_{n \to +\infty}S_n limn+Sn的大小和 q q q的取值有关。
( i ) (i) (i) ∣ q ∣ < 1 \vert q\vert<1 q<1时, lim ⁡ n → + ∞ q n = 0 \lim_{n \to +\infty}q^n = 0 limn+qn=0 lim ⁡ n → + ∞ S n = a 1 − q \lim_{n\to +\infty}S_n = \frac{a}{1-q} limn+Sn=1qa为定值,则级数收敛,其和为 a 1 − q \frac{a}{1-q} 1qa
( i i ) (ii) (ii) ∣ q ∣ > 1 \vert q \vert >1 q>1时, lim ⁡ n → + ∞ 1 − q n = ∞ \lim_{n \to +\infty} 1-q^n = \infty limn+1qn= lim ⁡ n → + ∞ S n = ∞ \lim_{n\to +\infty}S_n =\infty limn+Sn=,则级数发散。
( i i i ) (iii) (iii) q = 1 q = 1 q=1 时, u n = a u_n= a un=a lim ⁡ n → + ∞ S n = n a = ∞ \lim _{n\to +\infty}S_n = na=\infty limn+Sn=na=,则级数发散
特别地,当 q = − 1 q = -1 q=1 u n = ( − 1 ) n − 1 a u_n= (-1)^{n-1}a un=(1)n1a S 2 n = a − a + a − a + ⋯ + a − a = 0 S_{2n}=a-a+a-a+\dots+a-a = 0 S2n=aa+aa++aa=0 S 2 n − 1 = a − a + a − a + + ˙ a − a + a = a S_{2n-1} = a-a+a-a+\dot+a-a+a = a S2n1=aa+aa++˙aa+a=a,看起来是得到的定值,但是当 n   t o + ∞ n \ to +\infty n to+ 时,它的值是不固定的,即要么是 a a a 要么是 0 0 0。则级数发散

2)讨论级数 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + ⋯ + 1 n × ( n + 1 ) \frac{1}{1\times2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+\dots +\frac{1}{n\times (n+1)} 1×21+2×31+3×41++n×(n+1)1
的敛散性
级数第n个部分和 S n = 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + ⋯ + 1 n ( n + 1 ) = 1 − 1 2 + 1 2 − 1 3 + ⋯ + 1 n − 1 n + 1 = 1 − 1 n + 1 S_n = \frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times4}+\dots +\frac{1}{n(n+1)} = 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\dots+\frac{1}{n}-\frac{1}{n+1} = 1-\frac{1}{n+1} Sn=1×21+2×31+3×41++n(n+1)1=121+2131++n1n+11=1n+11
由于 lim ⁡ n → + ∞ 1 − 1 n + 1 = 1 \lim_{n\to+\infty}1-\frac{1}{n+1} = 1 n+lim1n+11=1
因此级数收敛,且其和为1
[判断级数收敛的方法:柯西准则]
级数收敛的充要条件是:任给正数 ϵ \epsilon ϵ,总存在正整数 N N N,使得当 m > N m>N m>N并且对任意的正整数 p p p,都有 ∣ U m + 1 + U m + 2 + U m + 3 + ⋯ + U m + p ∣ < ϵ \vert U_{m+1}+U_{m+2}+U_{m+3}+\dots+U_{m+p} \vert <\epsilon Um+1+Um+2+Um+3++Um+p<ϵ
类似的可以得到级数发散的充要条件是:存在某正整数 ϵ 0 \epsilon_0 ϵ0,对任何正整数N,总存在 m 0 ( > N ) m_0(>N) m0(>N) p 0 p_0 p0,有 ∣ U m 0 + 1 + U m 0 + 2 + U m 0 + 3 + ⋯ + U m 0 + p ∣ ≥ ϵ 0 \vert U_{m_0+1}+U_{m_0+2}+U_{m_0+3}+\dots+U_{m_0+p}\vert≥ \epsilon_0 Um0+1+Um0+2+Um0+3++Um0+pϵ0
推论:若级数收敛,则有 lim ⁡ n → + ∞ u n = 0 \lim_{n\to+\infty}u_n=0 n+limun=0
即若一个级数的一般项 u n u_n un不收敛于 0 0 0,则级数发散;但是一般项收敛于0级数也不一定收敛,请看下例:
证明调和级数 1 + 1 2 + 1 3 + 1 4 + ⋯ + 1 n 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\dots+\frac{1}{n} 1+21+31+41++n1
是发散的。

由于 lim ⁡ n → + ∞ u n = lim ⁡ n → + ∞ 1 n = 0 \lim_{n\to +\infty}u_n = \lim_{n\to +\infty}\frac{1}{n} = 0 n+limun=n+limn1=0
无法用该推论证明级数是发散的。接下来用柯西准则判断。
令p= m时,则有 ∣ u m + 1 + u m + 2 + u m + 3 + ⋯ + u m + m ∣ = 1 m + 1 + 1 m + 2 + 1 m + 3 + ⋯ + 1 2 m ≥ 1 2 m + 1 2 m + ⋯ + 1 2 m = 1 2 m × m = 1 2 \begin{equation} \begin{aligned} \vert u_{m+1}+u_{m+2}+u_{m+3}+\dots +u_{m+m}\vert &= \frac{1}{m+1}+\frac{1}{m+2}+\frac{1}{m+3}+\dots +\frac{1}{2m}\\ &≥\frac{1}{2m}+\frac{1}{2m}+\dots+\frac{1}{2m}\\ &=\frac{1}{2m}\times m = \frac{1}2 \end{aligned} \end{equation} um+1+um+2+um+3++um+m=m+11+m+21+m+31++2m12m1+2m1++2m1=2m1×m=21
ϵ 0 = 1 2 \epsilon_0 = \frac{1}2 ϵ0=21,级数发散。

判断级数 ∑ n = 1 ∞ ( n + 1 n ) n n n + 1 n \sum_{n=1}^{\infty}\frac{(n+\frac{1}{n})^n}{n^{n+\frac{1}{n}}} n=1nn+n1(n+n1)n的敛散性
lim ⁡ n → + ∞ ( n + 1 n ) n n n + 1 n = lim ⁡ n → + ∞ ( 1 + 1 n 2 ) n n 1 n = lim ⁡ n → + ∞ ( 1 + 1 n 2 ) n 2 × 1 n n 1 n = lim ⁡ n → + ∞ e 1 n n 1 n = lim ⁡ n → + ∞ 1 n 1 n \lim_{n\to +\infty}\frac{(n+\frac{1}{n})^n}{n^{n+\frac{1}{n}}}=\lim_{n\to +\infty}\frac{(1+\frac{1}{n^2})^n}{n^{\frac{1}{n}}}=\lim_{n\to +\infty}\frac{(1+\frac{1}{n^2})^{n^2\times\frac{1}{n}}}{n^{\frac{1}{n}}}=\lim_{n\to +\infty}\frac{e^{\frac{1}{n}}}{n^\frac{1}{n}}=\lim_{n\to +\infty}\frac{1}{n^{\frac{1}{n}}} n+limnn+n1(n+n1)n=n+limnn1(1+n21)n=n+limnn1(1+n21)n2×n1=n+limnn1en1=n+limnn11

则转化为求 lim ⁡ n → + ∞ n 1 n \lim_{n\to +\infty}n^{\frac{1}{n}} limn+nn1

lim ⁡ n → + ∞ n 1 n = lim ⁡ n → + ∞ e 1 n ln ⁡ n \lim_{n\to +\infty}n^{\frac{1}{n}} = \lim_{n\to +\infty}e^{\frac{1}{n}\ln n} n+limnn1=n+limen1lnn

由洛必塔法则 lim ⁡ n → + ∞ ln ⁡ n n = lim ⁡ n → + ∞ 1 n 1 = lim ⁡ n → + ∞ 1 n = 0 \lim_{n\to +\infty}\frac{\ln n}{n} = \lim_{n\to +\infty}\frac{\frac{1}{n}}{1} = \lim_{n\to +\infty}\frac{1}{n} = 0 n+limnlnn=n+lim1n1=n+limn1=0
则原极限等于 e 0 = 1 e^0 = 1 e0=1而不是0。则发散。

若级数 ∑ u n \sum u_n un ∑ v n \sum v_n vn 都收敛,则对任意常数 c , d c ,d c,d,级数 ∑ ( c u n + d v n ) \sum(cu_n+dv_n) (cun+dvn)也收敛,且 ∑ ( c u n + d v n ) = c ∑ u n + d ∑ v n \sum(cu_n+dv_n) = c\sum u_n+d\sum v_n (cun+dvn)=cun+dvn

  • 10
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值