跟李沐学AI-16 神经网络基础

1、层和块

import torch
from torch import nn
from torch.nn import functional as F

#nn.Sequential定义了一种特殊的Module
#我们通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的
net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20)
net(X)

1、自定义块

简要总结一下每个块必须提供的基本功能:

  1. 将输入数据作为其前向传播函数的参数。

  2. 通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。

  3. 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。

  4. 存储和访问前向传播计算所需的参数。

  5. 根据需要初始化模型参数。

'''
我们首先看一下前向传播函数,它以X作为输入, 计算带有激活函数的隐藏表示,并输出其未规范化的输出值。
在这个MLP实现中,两个层都是实例变量。 要了解这为什么是合理的,可以想象实例化两个多层感知机(net1和net2), 并根据不同的数据对它们进行训练。 
当然,我们希望它们学到两种不同的模型。
'''
class MLP(nn.Module):
    # 用模型参数声明层。
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()

        #这里,我们声明两个全连接的层
        self.hidden = nn.Linear(20, 256)  # 1、隐藏层
        self.out = nn.Linear(256, 10)  # 2、输出层

    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

#实例化多层感知机的层,然后在每次调用正向传播函数时调用这些层
net = MLP()
print(net(X))

2、顺序块

class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict
            self._modules[str(idx)] = module

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

3、 在前向传播函数中执行代码

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()

net = FixedHiddenMLP()
net(X)

4、混合搭配各种组合块的方法

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)

    def forward(self, X):
        return self.linear(self.net(X))

chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)

2、参数管理

1、参数访问 

首先关注具有单隐藏层的多层感知机

import torch
from torch import nn


#其中的参数 下标依次是  0  、1 、2
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

'''
我们从已有模型中访问参数。 当通过Sequential类定义模型时, 我们可以通过索引来访问模型的任意层。 
这就像模型是一个列表一样,每层的参数都在其属性中。 
如下所示,我们可以检查第二个全连接层的参数。
'''
#net[2]  指的是:nn.Linear(8, 1)
#state_dict 权重就是他的状态  就是常用的 w 和 b 参数
print(net[2].state_dict())

1、目标参数--访问某个具体的参数

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
'''
<class 'torch.nn.parameter.Parameter'>

Parameter containing:
tensor([0.0887], requires_grad=True)

tensor([0.0887])
'''

net[2].weight.grad == None  #True

2、一次性访问所有参数

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])

'''
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))

('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) 
('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))
'''

net.state_dict()['2.bias'].data  #tensor([0.0887])

3、从嵌套块收集参数

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
'''
tensor([[0.2596],
        [0.2596]], grad_fn=<AddmmBackward0>)
'''


#查看嵌套块是怎么工作的
#我们已经设计了网络,让我们看看它是如何组织的
print(rgnet)

'''
Sequential(
  (0): Sequential(
    (block 0): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 1): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 2): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 3): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
  )
  (1): Linear(in_features=4, out_features=1, bias=True)
)
'''

#因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 
#下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。
rgnet[0][1][0].bias.data

#tensor([ 0.1999, -0.4073, -0.1200, -0.2033, -0.1573,  0.3546, -0.2141, -0.2483])

2、参数初始化

1、内置初始化

# 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。
def init_normal(m):
    #只修改Linear 类型的层
    if type(m) == nn.Linear:
        # normal_  函数后面带下划线,表示这是一个替换函数,不会有返回值。直接在m上修改
        nn.init.normal_(m.weight, mean=0, std=0.01) 
        nn.init.zeros_(m.bias)  #偏差都置为0

#对所有net 里的layer 遍历 对其中所有的module 都调用init_normal 方法处理其中的参数
net.apply(init_normal)

#查看数据
net[0].weight.data[0], net[0].bias.data[0]
#(tensor([-0.0214, -0.0015, -0.0100, -0.0058]), tensor(0.))


#我们还可以将所有参数初始化为给定的常数,比如初始化为1
def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)

net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
#(tensor([1., 1., 1., 1.]), tensor(0.))
#对某些块应用不同的初始化方法
def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

#net 里面都是模组。 所有都可以用apply这个方法
net[0].apply(init_xavier)
net[2].apply(init_42)
#打印 
print(net[0].weight.data[0])
print(net[2].weight.data)
'''
tensor([ 0.5236,  0.0516, -0.3236,  0.3794])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])
'''

2、自定义初始化

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        '''这个语句好省力'''
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]
'''
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])

tensor([[5.4079, 9.3334, 5.0616, 8.3095],
        [0.0000, 7.2788, -0.0000, -0.0000]], grad_fn=<SliceBackward0>)
'''


#我们始终可以直接设置参数。
net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]
#tensor([42.0000, 10.3334,  6.0616,  9.3095])

3、参数绑定

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

'''tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])'''

3、自定义层

1、不带参数的层

import torch
import torch.nn.functional as F
from torch import nn


class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, X):
        return X - X.mean()  #可以让均值变成0

layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))
#tensor([-2., -1.,  0.,  1.,  2.])  均值变成0 了

#现在,我们可以将层作为组件合并到更复杂的模型中。
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
'''作为额外的健全性检查,我们可以在向该网络发送随机数据后,检查均值是否为0。 由于我们处理的是浮点数,因为存储精度的原因,我们仍然可能会看到一个非常小的非零数。'''
Y = net(torch.rand(4, 8))
Y.mean()

#tensor(7.4506e-09, grad_fn=<MeanBackward0>)

2、带参数的图层

'''
下面我们继续定义具有参数的层, 这些参数可以通过训练进行调整。 
我们可以使用内置函数来创建参数,这些函数提供一些基本的管理功能。 比如管理访问、初始化、共享、保存和加载模型参数。 
这样做的好处之一是:我们不需要为每个自定义层编写自定义的序列化程序。

现在,让我们实现自定义版本的全连接层。 
回想一下,该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。 
在此实现中,我们使用修正线性单元作为激活函数。 
该层需要输入参数:in_units和units,分别表示输入数和输出数。
'''

class MyLinear(nn.Module):
    def __init__(self, in_units, units):
        super().__init__()
        '''自定义参数的时候,要把参数包装一下放进 nn.Parameter 里面'''
        self.weight = nn.Parameter(torch.randn(in_units, units))
        self.bias = nn.Parameter(torch.randn(units,))
    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)

linear = MyLinear(5, 3)
print(linear.weight)

'''
Parameter containing:
tensor([[ 0.1775, -1.4539,  0.3972],
        [-0.1339,  0.5273,  1.3041],
        [-0.3327, -0.2337, -0.6334],
        [ 1.2076, -0.3937,  0.6851],
        [-0.4716,  0.0894, -0.9195]], requires_grad=True)
'''

#我们可以使用自定义层直接执行前向传播计算。
#使用自定义层直接执行正向传播计算
linear(torch.rand(2, 5))
'''
tensor([[0., 0., 0.],
        [0., 0., 0.]])
'''

#使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))  #tensor([[0.], [0.]])

4、读写文件--怎么存下训练好的东西

1、加载和保存张量

import torch
from torch import nn
from torch.nn import functional as F

x = torch.arange(4)
torch.save(x, 'x-file')

#可以将存储在文件中的数据读回内存。
x2 = torch.load('x-file')
print(x2)  #tensor([0, 1, 2, 3])

#我们可以存储一个张量列表,然后把它们读回内存。
y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
print((x2, y2))  #(tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.]))

#可以写入或读取从字符串映射到张量的字典。 当我们要读取或写入模型中的所有权重时,这很方便。
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
print(mydict2)
#{'x': tensor([0, 1, 2, 3]), 'y': tensor([0., 0., 0., 0.])}

2、加载和保存模型参数

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

#我们将模型的参数存储在一个叫做“mlp.params”的文件中。
torch.save(net.state_dict(), 'mlp.params')


#为了恢复模型,我们实例化了原始多层感知机模型的一个备份。 
#这里我们不需要随机初始化模型参数,而是直接读取文件中存储的参数。
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
'''MLP(
  (hidden): Linear(in_features=20, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)
'''

Y_clone = clone(X)
Y_clone == Y
'''
tensor([[True, True, True, True, True, True, True, True, True, True],
        [True, True, True, True, True, True, True, True, True, True]])
'''

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值