跟李沐学AI-37 微调--迁移学习

2、代码

1、热狗识别

import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
from d2l_loacal import  d2l_com as d2l_c

'''
该数据集包含1400张热狗的“正类”图像,以及包含尽可能多的其他食物的“负类”图像。 
含着两个类别的1000张图片用于训练,其余的则用于测试。
解压下载的数据集,我们获得了两个文件夹hotdog/train和hotdog/test。
这两个文件夹都有hotdog(有热狗)和not-hotdog(无热狗)两个子文件夹, 子文件夹内都包含相应类的图像。
'''
#@save
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip','fba480ffa8aa7e0febbb511d181409f899b9baa5')
data_dir = d2l.download_extract('hotdog')
#Downloading ../data/hotdog.zip from http://d2l-data.s3-accelerate.amazonaws.com/hotdog.zip...

#我们创建两个实例来分别读取训练和测试数据集中的所有图像文件。
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'))
#下面显示了前8个正类样本图片和最后8张负类样本图片。正如所看到的,图像的大小和纵横比各有不同。
hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
print("你看我打印图片没?")
d2l_c.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4)


2、微调模型 

import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l
from d2l_loacal import  d2l_com as d2l_c

'''
该数据集包含1400张热狗的“正类”图像,以及包含尽可能多的其他食物的“负类”图像。 
含着两个类别的1000张图片用于训练,其余的则用于测试。
解压下载的数据集,我们获得了两个文件夹hotdog/train和hotdog/test。
这两个文件夹都有hotdog(有热狗)和not-hotdog(无热狗)两个子文件夹, 子文件夹内都包含相应类的图像。
'''
#@save
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip','fba480ffa8aa7e0febbb511d181409f899b9baa5')
data_dir = d2l.download_extract('hotdog')
#Downloading ../data/hotdog.zip from http://d2l-data.s3-accelerate.amazonaws.com/hotdog.zip...

#我们创建两个实例来分别读取训练和测试数据集中的所有图像文件。
train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'))
#下面显示了前8个正类样本图片和最后8张负类样本图片。正如所看到的,图像的大小和纵横比各有不同。
hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l_c.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4)

#==============================
'''
在训练期间,我们首先从图像中裁切随机大小和随机长宽比的区域,然后将该区域缩放为输入图像。 
在测试过程中,我们将图像的高度和宽度都缩放到256像素,然后裁剪中央区域作为输入。 
此外,对于RGB(红、绿和蓝)颜色通道,我们分别标准化每个通道。 
具体而言,该通道的每个值减去该通道的平均值,然后将结果除以该通道的标准差。
'''
# 使用RGB通道的均值和标准差,以标准化每个通道
normalize = torchvision.transforms.Normalize(
    [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# 训练数据增强
train_augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(224),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    normalize])
# 测试数据增强
test_augs = torchvision.transforms.Compose([
    torchvision.transforms.Resize([256, 256]),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    normalize])

# 我们指定pretrained=True以自动下载预训练的模型参数。
# 如果[首次]使用此模型,则需要连接互联网才能下载。
pretrained_net = torchvision.models.resnet18(pretrained=True)
'''
预训练的源模型实例包含许多特征层和一个输出层fc。 
此划分的主要目的是促进 对除输出层以外 所有层的模型参数进行微调(迁移学习)。 
下面给出了源模型的成员变量fc。--只修改fc层
'''
print(pretrained_net.fc) #查看最后一层
#Linear(in_features=512, out_features=1000, bias=True)

'''
在下面的代码中,目标模型finetune_net中成员变量features的参数被初始化为源模型相应层的模型参数。 
由于模型参数是在ImageNet数据集上预训练的,并且足够好,因此通常只需要较小的学习率即可微调这些参数。
成员变量output的参数是随机初始化的,通常需要更高的学习率才能从头开始训练。
'''
finetune_net = torchvision.models.resnet18(pretrained=True)
# 只改fc层
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
# 初始化权重
nn.init.xavier_uniform_(finetune_net.fc.weight)

#=================
# 首先,我们定义了一个训练函数train_fine_tuning,该函数使用微调,因此可以多次调用。
# 如果param_group=True,输出层中的模型参数将使用十倍的学习率


def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5, param_group=True):
    train_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'train'), transform=train_augs),
        batch_size=batch_size, shuffle=True)
    test_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
        os.path.join(data_dir, 'test'), transform=test_augs),
        batch_size=batch_size)

    devices = d2l.try_all_gpus()
    loss = nn.CrossEntropyLoss(reduction="none")
    if param_group:
        params_1x = [param for name, param in net.named_parameters()
             if name not in ["fc.weight", "fc.bias"]]
        trainer = torch.optim.SGD([{'params': params_1x},
                                   {'params': net.fc.parameters(),
                                    'lr': learning_rate * 10}],  #10倍的 学习率
                                lr=learning_rate, weight_decay=0.001)
    else:
        trainer = torch.optim.SGD(net.parameters(), lr=learning_rate,
                                  weight_decay=0.001)
    d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,devices)

# 我们使用较小的学习率,通过微调预训练获得的模型参数。
train_fine_tuning(finetune_net, 5e-5)

'''
为了进行比较,我们定义了一个相同的模型,但是将其所有模型参数初始化为随机值。 
由于整个模型需要从头开始训练,因此我们需要使用更大的学习率。
'''
# scratch_net = torchvision.models.resnet18()
# scratch_net.fc = nn.Linear(scratch_net.fc.in_features, 2)
# train_fine_tuning(scratch_net, 5e-4, param_group=False)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值