- 博客(53)
- 收藏
- 关注
原创 【Windows】两台电脑之间怎么简单粗暴快速传输所有可复制的东西
刚才无意中发现的技巧,超绝,已上传到Github(与csdn同名)在电脑Bwindows+V,可看到。在电脑A复制一段文字。直接在电脑B粘贴即可。
2024-08-22 00:07:07
686
原创 【论文写作】论文引言的写作方法
拿到题目后按三要素原则重新修改(研究对象、目标、方法)根据题目搜索收集参考文献(有关于研究对象的、研究方法的、研究目标的、学术专著的共16-20篇)认真研读参考文献,逐字领会学写文献综述(即论文的引言部分:研究意义,国内外研究现状分析,要做的工作)引言又称前言、绪言、绪论引言部分一般不立“引言”等小标题只介绍论文总纲,起到定向引导的作用长度约占正文的1/10-1/8写作前提:真的看懂文献。
2024-08-19 14:15:01
1352
原创 【论文写作】怎么写一篇学术论文
整篇论文中最重要的部分,没有之一如果审稿人只会读你论文的一个部分,这个部分大概就是前言"写好一篇论文的前言不能保证你一定能发CNS,但是能发CNS的文章通常都一个强大的前言部分”如果你的前言部分有一张图表,那这张图表的重要性甚至会超过文字的重要性一定程度上说,这是体现你导师真正科研水平的一个部分(但是这不是你甩锅给你导师的理由)一般来说,前言部分可以包括以下部分:你研究领域所属的大领域的大的背景,尤其是其重要的意义(应用价值)
2024-08-19 00:27:04
1040
2
原创 【论文写作】核心期刊写作的框架与布局学习笔记
论文写作有经验,也有套路,但经验>套路论文发表的前提是要有明确,甚至一致的研究方向多想和多写才是论文发表的基本功有计划、有目标、常态化的写作是有必要的。
2024-08-18 00:49:02
1338
原创 【GDB Debugger】新手快速入门学习笔记
学习资源来自B站【小神仙讲 GDB】 通俗易懂版教程 | 一小时入门GDB | Debug | c/c++程序员必备 | 佩雨小神仙_哔哩哔哩_bilibiliGDB 调试器,帮助你检查程序运行时的内部情况Start your program, specifying anything that might affect its behavior.启动并设置程序运行的参数Make your program stop on specified conditions.使程序在确定情况下停止(打断点)
2024-03-19 00:39:54
887
原创 【MATLAB】安装问题:“无法检索产品”、“无法连接到mathworks”
关闭所有的防火墙——依旧出现错误“无法检索产品”更换另一个网络,简称网络2:出现新的错误“无法连接到mathworks”又换了一个网络,简称网络3:还是这个错误“无法连接到mathworks”换回手机热点,简称网络1:又回到了第一个问题“无法检索产品”安装时无法连接到mathworks的解决(详细)_无法连接到mathworks怎么解决-CSDN博客,添加环境变量,还是“无法连接到mathworks”换成手机热点(网络1):又回到了第一个问题“无法检索产品”
2024-02-22 18:36:05
1642
原创 【MATLAB GUI】 5. 图像处理菜单(菜单编辑器)
编辑”图像处理-转成灰度图“的回调函数:点击菜单编辑器,点击图像处理-转成灰度图,标记改为”gray“,点击”查看“,定位到回调函数。添加上下文菜单:实现第一个快捷菜单在右键点击左边坐标区时会跳出打开功能,第二个快捷菜单在右键点击右边坐标区时会跳出转成灰度图功能。编辑”文件-导出“的回调函数:点击菜单编辑器,点击文件-导出,标记改为”export“,点击”查看“,定位到回调函数。编辑”文件-打开“的回调函数:点击菜单编辑器,点击文件-打开,标记改为”open“,点击”查看“,定位到回调函数。
2024-02-22 18:26:14
1781
原创 【MATLAB GUI】 3. 列表框和弹出式菜单
想去除列表框的蓝色背景:把列表框的value设置为空(一对方括号[])——把属性中的max和min设置为插值不为1时,value就可以设置为空或者其他多个字符。写“注册”按钮的回调函数代码:在.fig界面右击“注册”按钮-查看回调-callback,定位到.m文件的pushbutton1_Callback。对于弹出式菜单,应该有多个选项,在其String输入框左侧,有个小标志,点击,输入各个选项,用回车进行分隔,点击确定。全选,双击,修改FontSize为16,修改String。
2024-02-20 02:04:39
2102
原创 【MATLAB GUI】 2. 设计一个闹铃/定时器(静态文本、可编辑文本、普通按钮、复选框)
可编辑文本框的显示涉及string属性,但是不能在这个属性上写回调函数,因为他会处理成字符串原样输出在可编辑文本框中。在设定时间右边的可编辑文本框中,运行时应该显示出当前的系统时间。但是目前初始化界面中,“播放音乐”默认未勾选,“添加音乐”按钮默认可用,会造成冲突。然后把播放音乐的功能放到“定时”按钮中来,直接在“定时”按钮的回调函数添加。“添加音乐”按钮的回调函数:希望点击后跳出一个文件选择窗口,选择音乐文件。“播放音乐”复选框和“添加音乐”按钮。添加“定时”按钮的回调函数。
2024-02-20 01:58:27
1454
原创 【MATLAB GUI】 1. 普通按钮、静态文本和可编辑文本
看B站up主freexyn的freexyn编程实例视频教程系列36Matlab GUI的学习笔记。
2024-02-18 18:07:39
5921
原创 【C语言】pq->rear->next = pnew与pq->rear = pnew
【代码】【C语言】pq->rear->next = pnew与pq->rear = pnew。
2024-02-17 15:09:59
410
原创 【C语言】(*plist)->next和plist->next的区别
直接通过指针访问结构体成员,两者的效果是一样的,都是访问链表中的下一个节点的指针。解引用了指针并且访问了结构体成员,而 plist->next。实际上是一个指向链表头节点的指针,而不是指向指针的指针。总的来说,区别在于 (*plist)->next。结构体的指针,因此 List。和 plist->next。被定义为指向 Node。在这段代码中,List。
2024-02-17 15:08:16
274
原创 【自控实验】4. 数字仿真实验
本科课程实验报告,有太多公式和图片了,干脆直接转成图片了仅分享和记录,不保证全对使用matlab中的simulink进行仿真。
2024-01-13 00:25:27
735
原创 【自控实验】3. 带有饱和非线性环节控制系统相平面分析
在输入单位阶跃信号Xsr时,用示波器观察和记录系统输入饱和非线性环节前后的Xsc-Xsc相轨迹图(共记录两条曲线)(定性)。本科课程实验报告,有太多公式和图片了,干脆直接转成图片了。Xsr=2.2V,饱和非线性环节上下限为±0.5V。使用matlab中的simulink进行仿真。有无非线性环节的相轨迹对比,并求超调量。仅分享和记录,不保证全对。
2024-01-13 00:20:18
974
转载 【C语言】scanf与getchar的用法和常见错误详解
scanf:可输入不包含空格的数据,不读取回车,空格和回车表示输入完毕getchar:只能读取用户输入缓存区的一个字符,包括回车注意缓冲区的清理(while ( getchar()!= ‘\n’);
2023-12-02 21:56:18
409
原创 语音合成(中文)
新建目录Demo,将SDK中bin、include、libs文件夹和sample里的64bit_make.sh、Makefile、tts_offline_sample.c复制到新建工程“Demo”文件夹下。解决:sudo cp /home/jun/catkin_ws/src/tts/libs/x64/libmsc.so /usr/lib。cd到bin目录下运行目标文件,SDK启动后,bin/msc目录下会生成日志(注意:msc文件夹下需有msc.cfg文件)PS:只能生成.wav文件,无法直接播报。
2023-08-31 16:53:31
486
原创 【跟李沐学AI—机器学习】7 深度神经网络的共用设计及微调
所以NLP更多使用自监督训练,即标号是自己产生的,著名模型有Language model(LM,预测下一个词)、Masked language model(MLM,随机遮挡词语并进行预测,即完形填空)对数据进行标准化,使得数据均值为0、方差为1,可以使得损失函数更加平滑(当x和y相隔较远时,其导数不会有太大变化,这样子学习率可以设定得更大一些,即步长更大)。而预训练模型一般是在比较大的数据上训练,具有一定的泛化能力,虽然在最后的解码器中不太起作用,但是在编码器中多多少少学到了东西。神经网络大致可分为两块。
2023-08-15 22:17:42
95
原创 【跟李沐学AI—机器学习】6 模型的调参
简单来说,就是一个玄学,没法科学解释每个参数的作用,只能靠经验和直觉介绍了几个记录实验数据的工具,如tensorboard、weights&bias。
2023-08-15 22:16:32
156
原创 【跟李沐学AI—机器学习】5 模型优化
与bagging不同,stacking可以是一起使用不同类别的模型,数据输入到不同的模型中训练,其中不需要bootstrap,即用相同的数据训练不同的模型框架,最后把所有结果用线性连接起来,即加权求和得到最终输出。n为学习率,可以对新模型ht进行正则化,在Boosting中叫做shrinkage收缩(n不为1,当n=1时,即ht完全拟合了残差,容易造成模型Ht+1的过拟合)训练n个模型,若为回归问题,会把n个训练结果做平均,得到Bagging结果,即用不同的数据训练一个模型框架。采样越多,方差越小。
2023-08-15 22:12:35
149
原创 【跟李沐学AI—机器学习】4 模型验证——验证集
I.I.D即独立同分布(independent and identically distributed,i.i.d.)在概率统计理论中,指随机过程中,任何时刻的取值都为随机变量,如果这些随机变量服从同一分布,并且互相独立,那么这些随机变量是独立同分布。如句子、房价(和时间有关)、不同类别样本不均匀的数据(训练时候看得多了自然效果好)4. 每次用不同的部分作为测试集,重复步骤2和3 K次。1. 将原始数据集划分为相等的K部分(“折”)2. 将第1部分作为测试集,其余作为训练集。
2023-08-15 22:07:31
219
原创 【跟李沐学AI—机器学习】2 神经网络
*池化层/汇聚层:**当搜寻的区域发生平移时,这片区域的像素最大值/平均值也会发生平移,只要抓住这个最大值/平均值就可以补偿平移带来的变化。假设要在某图像中寻找一个戴白帽子的人,即使这个戴白帽子的人在图像中的位置变化了,但是这块区域的像素信息不变,即。的“world”为隐藏状态,不论之后还有多少层,这个“world”包含的信息不变,包含过去时间所有的信息。先输入“hello”,通过全连接层预测得到“world”,先不进行softmax操作,把这个得到的、的“world”和②当前信息的“world”
2023-08-15 21:57:47
120
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人