CCF-CSP 202312-2 因子化简

问题描述

试题编号:202312-2
试题名称:因子化简
时间限制:2.0s
内存限制:512.0MB
问题描述:

题目背景

质数(又称“素数”)是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

问题描述

小 P 同学在学习了素数的概念后得知,任意的正整数 n 都可以唯一地表示为若干素因子相乘的形式。如果正整数 n 有 m 个不同的素数因子 p1,p2,⋯,pm,则可以表示为:n=p1t1×p2t2×⋯×pmtm。

小 P 认为,每个素因子对应的指数 ti 反映了该素因子对于 n 的重要程度。现设定一个阈值 k,如果某个素因子 pi 对应的指数 ti 小于 k,则认为该素因子不重要,可以将 piti 项从 n 中除去;反之则将 piti 项保留。最终剩余项的乘积就是 n 简化后的值,如果没有剩余项则认为简化后的值等于 1。

试编写程序处理 q 个查询:

  • 每个查询包含两个正整数 n 和 k,要求计算按上述方法将 n 简化后的值。

输入格式

从标准输入读入数据。

输入共 q+1 行。

输入第一行包含一个正整数 q,表示查询的个数。

接下来 q 行每行包含两个正整数 n 和 k,表示一个查询。

输出格式

输出到标准输出。

输出共 q 行。

每行输出一个正整数,表示对应查询的结果。

样例输入

3
2155895064 3
2 2
10000000000 10

Data

样例输出

2238728
1
10000000000

Data

样例解释

查询一:

  • n=23×32×234×107

  • 其中素因子 3 指数为 2,107 指数为 1。将这两项从 n 中除去后,剩余项的乘积为 23×234=2238728。

查询二:

  • 所有项均被除去,输出 1。

查询三:

  • 所有项均保留,将 n 原样输出。

子任务

40% 的测试数据满足:n≤1000;

80% 的测试数据满足:n≤105;

全部的测试数据满足:1<n≤1010 且 1<k,q≤10。

看到10次方这么大肯定要上longlong的

这道题思路其实很简单楼主在输出上卡了很久,因为第一,二个输出是对的,但第三个是错的,所以我觉得我没问题,最后把好多int 改ll最后才过(最后把enddd改int为ll输出没毛病了,然后提交过了)

楼主第一次用了j*j<=t来优化素数的提取,但即便是遍历也没有出现任何问题(0ms,62ms),也是100

一些注释是后面发现没用,一些是用于测试(比如//cout<<*zanyu<<" "<<*zhishu<<endl;,让我知道我的第三个输入后的输出指数项没错(2e10,5e10,还好在int范围内...(好险..)))

代码如下:

#include<bits/stdc++.h>
using namespace std;
//const int Q=11;
//const int K=11;
typedef long long ll;
ll get(ll*t,int j,int k,int*zhishu,ll*zanyu){
	if((*t)%j==0){
		(*zhishu)++;
		(*zanyu)*=j;
		(*t)/=j;
		get(t,j,k,zhishu,zanyu);
	}
	else{
		if((*zhishu)>=k){
			//cout<<*zanyu<<" "<<*zhishu<<endl;
			return *zanyu;
		}
		else{
			
			return 1; 
			
		}
	}
	
	
	
	
}
ll check(ll t,int i,int k){
	ll enddd=1;
	int yuxiang=1;
	for(int j=2;j*j<=t;j++) {
		if(t%j==0){
			int zhishu=0;//记录指数
			ll zanyu=1;//记录暂时余项 
			yuxiang=get(&t,j,k,&zhishu,&zanyu);
			enddd*=yuxiang;
			
			zhishu=0;
			zanyu=1;
		}
		
	}
	return enddd;
	
}
 
int main(){
	//cout<<"111"<<endl;
	int q;
	cin>>q;//查询个数
	ll t;
	int k;
	for(int i=0;i<q;i++) {
		cin>>t>>k;
		//cout<<t<<" "<<k<<endl;
		cout<<check(t,i,k)<<endl;
	}

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值