1.整数在内存中的存储
之前在学习操作符的博文中,我们就已经学习了整数在内存中存储的一些基本知识,我们来快速回忆一下,并开始学习新的知识。
之前的学习中,我们知道整数的二进制表示方法有三种,即原码,反码,补码。真正存放在内存中的其实是补码。三种表示方法均有符号位与数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最高的那一位被认作是符号位,剩余的都是数值位。
正整数的原,反,补码都相同,负整数的三种表示方法各不相同。
原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
1.1大小端字节序和字节序判断
当我们了解了整数在内存中存储后,我们调试观察一下:
调试的时候,我们可以看到在num中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为什么呢?他为什么会按照这个顺序在内存中这样存储?
其实超过一个字节的数据在内存中存储的时候,就会有存储顺序的问题,按照不同的存储顺序,我们将其分为大端字节序存储和小端字节序存储,具体概念如下:
大端(存储)模式:是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
我们这时候来看上面这个代码,num的十六进制表示为11223344,44是数据最低位数,在内存划分中它分配在内存中的低地址处,11是数据最高位数,在内存划分中它分配在内存中的高地址处,按照大小端存储定义,我们可以得出该环境下是小端存储模式的结论。
为什么会有大小端模式之分呢?
这是因为在计算机系统中,我们是以字节为单位来存储数据的,每个地址单元都对应着一个字节,一个字节为8个bit位,但是在C语言中除了8bit的char之外,还有16bit位的short,32bit位的long(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位和32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个16bit位的short类型num,在内存中的地址为0x5566,num的值为0x1122,那么0x11为数据高位,0x22为数据低位。在大端模式中,就将0x11放在低地址中,0x22放在高地址中。小端模式,则与之相反。我们常用的x86结构式小端模式。
1.2练习
学习了整数在内存中的存储方式之后,我们要想掌握的更好,练习是必不可少的,让我们来做几个题目吧。
1.2.1练习一
//方法一
int main()
{
int num = 1;
int* pz = #
if (*((char*)pz) == 1)
{
printf("小端存储");
}
else
printf("大端存储");
return 0;
}
//方法二,创建函数
int test()
{
int i = 1;
return *(char*)&i;
}
int main()
{
int ret = test();
if (ret == 1)
{
printf("小端存储");
}
else
printf("大端存储");
return 0;
}
这个练习还是比较简单的,我们首先创建一个整型变量为1(十六进制表示为0x00000001),取出它的地址,再强制转换为char*类型的指针,得到的会是之前int*指针中内存较低的地址,解引用之后如果得到的是1,说明该环境是小端存储模式,不是则为大端存储模式。
1.2.2练习二
#include <stdio.h>
int main()
{
char a = -1;
signed char b = -1;
unsigned char c = -1;
printf("a=%d,b=%d,c=%d", a, b, c);
return 0;
}
这个题的解决需要我们运用到许多知识,计算过程如下:
int main()
{
char a = -1;
//-1是一个整数,先得到他的补码
//11111111 11111111 11111111 11111111
//将-1存放到了一个类型为char的变量a中,
//由于char类型的变量只能存放8个bit位,所以截取低位8个bit位,变成了11111111
//因为结果打印是以%d的形式打印,所以需要进行整型提升,a是有符号的char,最高位又为1,所以高位补1
//11111111 11111111 11111111 11111111
//转换为原码为10000000 00000000 00000000 00000001
//所以结果为-1
signed char b = -1;
//b的思路与结果与a一摸一样,这里省略(在vs2022中,char类型默认为有符号的char)
unsigned char c = -1;
//我们还是将-1补码求出
//11111111 11111111 11111111 11111111
//c是无符号char类型,所以还是截取低位8个bit位,变成11111111
//但是我们要注意c是无符号类型的,进行整型提升,最高位应该补的是0
//所以原码为00000000 00000000 00000000 11111111
//转换为十进制为255
printf("a=%d,b=%d,c=%d", a, b, c);
return 0;
}
1.2.3练习三
int main()
{
char a = -128;
printf("%u\n", a);
return 0;
}
int main()
{
char a = 128;
printf("%u\n", a);
return 0;
}
计算过程如下:
int main()
{
char a = -128;
//-128
//10000000 00000000 00000000 10000000原码
//11111111 11111111 11111111 01111111反码
//11111111 11111111 11111111 10000000补码
//a截取10000000存入地址中,由于打印是以%u的形式打印,所以我们需要对a进行整型提升
//a是有符号类型的,最高为符号位为1,所以补1
//11111111 11111111 11111111 10000000补码
//因为%u打印的是无符号的整数类型,所以该数原,反,补码一样
//换算成十进制为4,294,967,168
printf("%u\n", a);
return 0;
}
int main()
{
char a = 128;
//128原码,反码,补码都相同
//00000000 00000000 00000000 10000000
//a截取10000000放入地址中,这时我们会发现和上面代码解题步骤和结果都是一样的4,294,967,168
//这是为什么呢?
printf("%u\n", a);
return 0;
}
上面两个代码最后打印出来的结果是一样的,让我们不由得感到疑惑。
其实,signed char(vs2022环境下char默认是signed char)的取值范围是-128~127,也就是说,他根本取不到128这个值,它实际存入的是-128,所以上面代码结果是相同的。我们可以这样理解:
上面的这幅图为我们很好的展示了char类型数据溢出时会在内存中实际存放的数,127之后是-128,-128之后是127。
1.2.4练习四
int main()
{
char a[1000];
int i;
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i;
}
printf("%d", strlen(a));
return 0;
}
这个代码看上去很简单,a[0] = -1,a[1] = -2直到a[999]=-1000循环结束,strlen(a)碰不到\0,并不能算出什么有效数字,事实真的如此吗?我们运行程序看一下结果:
答案是255, 甚至多运行几遍,也是一样的结果,其实这是因为数组a里每个数字里的类型都是char类型,并不是int类型,按照char类型的范围-128~127,-128后面的数字是什么呢?其实是127,在之后不断减一,最后在第256个时,strlen碰到了\0,停止了计算。
1.2.5练习五
//代码一
unsigned char i = 0;
int main()
{
for (i = 0; i <= 255; i++)
{
printf("hello world\n");
}
return 0;
}
//代码二
int main()
{
unsigned int i;
for (i = 9; i >= 0; i--)
{
printf("%u\n", i);
}
return 0;
}
上面两段代码的结果都是死循环。
代码一i是无符号char类型变量,取值范围为0~255,所以无论i怎么加,他在内存中实际存放的值都不可能超过255 ,for循环会一直持续下去。
代码二也是一样的道理,不管i如何减,他在内存中实际存放的数值都不可能小于0,也会死循环。
1.2.6练习六
int main()
{
int a[4] = { 1, 2, 3, 4 };
int* ptr1 = (int*)(&a + 1);
int* ptr2 = (int*)((int)a + 1);
printf("%x,%x", ptr1[-1], *ptr2);
return 0;
}
计算过程:
int main()
{
int a[4] = { 1, 2, 3, 4 };
int* ptr1 = (int*)(&a + 1);
//&a取出整个数组的地址,大小为四个字节,加一之后往后跳四个字节
//然后强制转换成int*类型的指针,该指针实际上就是整个数组地址的后一个字节
//ptr[-1]可以转为*(ptr-1),指向的是数组最后一个元素的地址,数值为4
int* ptr2 = (int*)((int)a + 1);
//a为首元素地址,强制转换为整数类型,整数加一就是数值层面加一
//再将和强转为整形指针,它实际是数组首元素的后三个字节加上数组第二个元素的第一个字节
//数组的第一个元素四个字节内容:01 00 00 00
//数组的第二个元素四个字节内容:02 00 00 00
//所以实际结果是00 00 00 02
//该环境为小端存储模式,所以结果为02000000
printf("%x,%x", ptr1[-1], *ptr2);
return 0;
}
有些同学可能不是很能理解(int*)((int)a + 1)这个式子,我们举个例子,a的地址为0x10,我们将他转换之后加一,变成了0x11,然后又转为指针,地址变成了0x11,指向的内容就往后顺延了一个字节。
2.浮点数在内存中的存储
在学习浮点数在内存存储的方式之前,我们先来看一个例子:
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
我们是不是很容易想到答案,答案依次为:9,9.000000,9,9.000000,答案真的是这样吗?我们运行代码:
我们的答案跟正确答案有一半是对的,还有一半则是完全不对,其实这源于整数与浮点数在内存中完全不同的存储方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个二进制浮点数V可以表示成下面的形式:
V = (-1)^ S * M * 2 ^ E
• (-1)^S表示符号位,当S=0时,V为正数;当S=1时,V为负数
• M表示有效数字,M是大于等于1,小于2的
• 2^E表示指数位
举个例子:5.5,二进制表示为101.1,相当于1.011*2^2
可以得到S=0,M=1.011,E=2
IEEE 754规定:对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M


IEEE 754 对有效数字M和指数E,还有⼀些特别规定。
M:
前面说过, 1 ≤ M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。E:首先,E为⼀个无符号整数(unsigned int)。这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。指数E从内存中取出还有两种特殊情况:E全为0:这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。E全为1这时,如果有效数字M全为0,表示±⽆穷⼤(正负取决于符号位s);
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);//9
printf("*pFloat的值为:%f\n", *pFloat);//0.000000
//9的补码为:
//00000000 00000000 00000000 00001001
//当一个浮点数的浮点数指向这一片被强转空间后,我们可以得到E为全0
//所以*pFloat是一个很小很小的数字
*pFloat = 9.0;
printf("num的值为:%d\n", n);
//9.0的二进制表示为1001.0,可以转换为1.001*2^3,写成:
//0 10000010 00100000000000000000000
//转换为十进制为:1,091,567,616
printf("*pFloat的值为:%f\n", *pFloat);//9.000000
return 0;
}