给定一个大小为 n≤10000的数组。
有一个大小为 k 的滑动窗口,它从数组的最左边移动到最右边。
你只能在窗口中看到 k个数字。
每次滑动窗口向右移动一个位置。
以下是一个例子:
该数组为 [1 3 -1 -3 5 3 6 7]
,k 为 33。
窗口位置 | 最小值 | 最大值 |
---|---|---|
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7] | 3 | 7 |
你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。
输入格式
输入包含两行。
第一行包含两个整数 n和 k,分别代表数组长度和滑动窗口的长度。
第二行有 n 个整数,代表数组的具体数值。
同行数据之间用空格隔开。
输出格式
输出包含两个。
第一行输出,从左至右,每个位置滑动窗口中的最小值。
第二行输出,从左至右,每个位置滑动窗口中的最大值。
输入样例:
8 3
1 3 -1 -3 5 3 6 7
输出样例:
-1 -3 -3 -3 3 3
3 3 5 5 6 7
#include <iostream>
using namespace std;
const int N=1e7;
int a[N],q[N];
int main(){
int n,k,h=0,t=-1;//h代表队头,t代表队尾,q[h]`q[t]代表此时队头和队尾到达数组哪个位置(下标)
cin>>n>>k;
for(int i=0;i<n;i++) scanf("%d",&a[i]);
for(int i=0;i<n;i++){
if(h<=t&&i+1-k>q[h]) h++;//保证队头在窗口内第一位
while(h<=t&&a[q[t]]>=a[i]) t--;//a[q[t]代表队尾此时在数列中的值,只要前者大于a[i]即新加入的数,则不符合h-t单调递增,大值删除,队尾向h移动
q[++t]=i;
if(i+1>=k) printf("%d ",a[q[h]]);//此时从h-t已经是单调递增,则数组在队头h下标的值在窗口内最小,输出数组在队头下标值
}
cout<<endl;
h=0,t=-1;
for(int i=0;i<n;i++){
if(h<=t&&i+1-k>q[h]) h++;
while(h<=t&&a[q[t]]<=a[i]) t--;//同理,将新加入的数之前小于它的值删除直至形成h-t单调递减,所以队头所在值即窗口最大值
q[++t]=i;
if(i+1>=k) printf("%d ",a[q[h]]);//此时从h-t已经是单调递增,则数组在队头h下标的值在窗口内最小,输出数组在队头下标值
}
return 0;
}