100 可以表示为带分数的形式:100=3+69258/714
还可以表示为:100=82+3546/197
注意特征:带分数中,数字 1∼9 分别出现且只出现一次(不包含 0)。
类似这样的带分数,100 有 11 种表示法。
输入格式
一个正整数。
输出格式
输出输入数字用数字1∼9 不重复不遗漏地组成带分数表示的全部种数。
数据范围
1≤N<1000000
输入样例1:
100
输出样例1:
11
输入样例2:
105
输出样例2:
6
先了解带分数的定义:一个整数==一个不同的整数+一个分数
用字符定义就是n=a+b/c,因此我们先把1-9全排序算出a,b,c三个数值,然后用定义去筛选得出答案要求的次数。
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int num[N];//存放不同分支下排列的数字 num[i]的含义:第i种2数字的值为num[i];
bool use[N];
int ans=0;
int n;
int cal(int l,int r)
{
int res=0;
for(int i=l;i<=r;i++) res=res*10+num[i];
return res;
}
void dfs(int u)//u代表分支中有多少种数字(1-9)
{
if(u==9)
{
for(int i=0;i<7;i++)//带分数定义:n=a(整数)+b/c(分数),化形为n*c=a*c+b;需要计算三个数字的组合因此要两个分界点分成三个数字(两重循环)
for(int j=i+1;j<8;j++)
{
int a=cal(0,i);
int b=cal(i+1,j);
int c=cal(j+1,8);
if(n*c==a*c+b) ans++;
}
return ;//结束点:u=9,没有结束点就会无限递归下去变成mle
}
//为什么在这行return会出错
for(int i=1;i<=9;i++)
{
if(!use[i])
{
use[i]=true;//表示该分支中i已被使用
num[u]=i;
dfs(u+1);
use[i]=false;//还原
}
}
}
int main()
{
cin>>n;
dfs(0);
cout<<ans;
return 0;
}