蓝桥杯真题:带分数

100 可以表示为带分数的形式:100=3+69258/714

还可以表示为:100=82+3546/197

注意特征:带分数中,数字 1∼9 分别出现且只出现一次(不包含 0)。

类似这样的带分数,100 有 11 种表示法。

输入格式

一个正整数。

输出格式

输出输入数字用数字1∼9 不重复不遗漏地组成带分数表示的全部种数。

数据范围

1≤N<1000000

输入样例1:
100
输出样例1:
11
输入样例2:
105
输出样例2:
6

先了解带分数的定义:一个整数==一个不同的整数+一个分数

用字符定义就是n=a+b/c,因此我们先把1-9全排序算出a,b,c三个数值,然后用定义去筛选得出答案要求的次数。

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int num[N];//存放不同分支下排列的数字 num[i]的含义:第i种2数字的值为num[i];
bool use[N];
int ans=0;
int n;
int cal(int l,int r)
{
    int res=0;
    for(int i=l;i<=r;i++) res=res*10+num[i];
    return res;
}  
void dfs(int u)//u代表分支中有多少种数字(1-9)
{
    if(u==9)
    {
        for(int i=0;i<7;i++)//带分数定义:n=a(整数)+b/c(分数),化形为n*c=a*c+b;需要计算三个数字的组合因此要两个分界点分成三个数字(两重循环)
            for(int j=i+1;j<8;j++)
                {
                    int a=cal(0,i);
                    int b=cal(i+1,j);
                    int c=cal(j+1,8);
                    if(n*c==a*c+b) ans++;
                }
        return ;//结束点:u=9,没有结束点就会无限递归下去变成mle
    }
             //为什么在这行return会出错
    for(int i=1;i<=9;i++)
    {
        if(!use[i])
        {
        use[i]=true;//表示该分支中i已被使用
        num[u]=i;
        dfs(u+1);
        use[i]=false;//还原
        }
    }
}
int main()
{
  
    cin>>n;
    dfs(0);
    cout<<ans;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值