在求解无理函数的不定积分时,我们要紧抓一个根本,便是无理函数的有理化,通俗点来讲就是把无理函数转换成有理函数后,用上一节所讲的有理函数求解法来求。
那么也就是说,求解无理函数的不定积分的关键就是将其转换为有理函数,那么我们所要掌握的关键则是转换的方法,下面则来介绍其具体方法。
首先,则是普通无理函数的不定积分,例题
可以看到是通过简单的代换,将无理函数有理化后进行求解
另一最常见的便是含二次无理式的无理函数,在这里,我们来做一约定,含二次无理式的无理函数的通式则可以表示为
另外,我们也将下列通过通式拓展开的通项同样做一约定。
下面则来介绍①类问题,来看一道例题