【无标题】关于数学中求解无理函数不定积分的方法介绍

在求解无理函数的不定积分时,我们要紧抓一个根本,便是无理函数的有理化,通俗点来讲就是把无理函数转换成有理函数后,用上一节所讲的有理函数求解法来求。

       那么也就是说,求解无理函数的不定积分的关键就是将其转换为有理函数,那么我们所要掌握的关键则是转换的方法,下面则来介绍其具体方法。

        首先,则是普通无理函数的不定积分,例题f82a6ea20de9401b881093c054b98516.jpeg

 

可以看到是通过简单的代换,将无理函数有理化后进行求解

另一最常见的便是含二次无理式的无理函数,在这里,我们来做一约定,含二次无理式的无理函数的通式则可以表示为fb91a4e5c0f74de6a8226868a4545f90.jpeg

 另外,我们也将下列通过通式拓展开的通项同样做一约定。424f74f4d0b84c36a27b789abe7b7c8c.jpeg

 下面则来介绍①类问题,来看一道例题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云意cc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值