目录
在讲解函数的时候提到过函数的嵌套调用:C语言:函数-CSDN博客。函数的嵌套调用有两种情况,一种是函数调用其他函数,另一种就是函数调用本身。函数调用本身的情况就叫做函数递归。
一、递归的定义
函数调用自己的嵌套调用就叫做函数递归。虽然听起来非常简单,不就是函数调用自己吗?函数递归本身的性能很强,能解决很多计算量大的数学计算。有利就有弊,其思维量也是一般C程序不可比拟的。在解决递归相关的问题时候想破头皮也想不出来也是很正常的。这里我们演示一个非常简单的函数递归:
#include <stdio.h>
int main()
{
printf("hehe\n");
main();//main函数中⼜调⽤了main函数
return 0;
}
假若我们运行这段代码,就会发现程序会进入死循环,无限地打印hehe,有时还会遇到栈溢出的情况(如VS2022):
1.递归的思想
把一个大型复杂问题层层转化为一个与原问题相似,但规模较小的子问题来求解;直到子问题不能再被拆分,递归就结束了。所以递归的思考方式就是把大事化小的过程。递归中的递就是递推的意思,归就是回归的意思,接下来慢慢来体会。
2.递归的限制条件
递归在书写的时候,有2个必要条件:
递归存在限制条件,当满足这个限制条件的时候,递归便不再继续
每次递归调用之后越来越接近这个限制条件。
在下面的例子中,我们逐步体会这2个限制条件。
二、递归的举例
1.求n的阶乘
我们知道n的阶乘的公式:n! = n * (n - 1) * (n - 2) * (n - 3) * ... * 2 * 1
但是根据递归的思想——大事化小,我们可以将阶乘公式写成这样:
举例:
5! = 5*4*3*2*1
4! = 4*3*2*1
所以:5! = 5*4!
也就是 n! = n * (n-1)!
当 n==0 的时候,n的阶乘是1,其余n的阶乘都是可以通过公式计算。n的阶乘的递归公式如下:
那我们就可以写出函数Fact()求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶乘,函数如下:
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
我们来测试一下这个函数是否可以正常运行。这里我们不设置太大的数字,防止出现栈溢出的情况:
#include <stdio.h>
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fact(n);
printf("%d\n", ret);
return 0;
}
这里我们输入5,结果:
5的阶乘的确是120,所以这个函数是可以正常使用的。
2.顺序打印一个整数的每一位
输入一个整数m,顺序打印整数的每一位。比如:
输入:1234 输出:1 2 3 4
输入:520 输出:5 2 0
这个题目,放在我们面前首先想到的是,怎么得到这个数的每一位呢?如果n是一位数,n的每一位就是n自己;n是超过1位数的数字,就得拆分每一位
1234%10 就能得到4,然后 1234/10 得到123,这就相当于去掉了4
然后继续对123%10,就得到了3,再 /10 去掉3,以此类推
不断的 %10 和 /10 操作,直到1234的每一位都得到;
但是这里有个问题就是得到的数字顺序是颠倒的
但是我们有了灵感,我们发现其实一个数字的最低位是最容易得到的,通过 %10 就能得到。那我们假设想写一个函数Print()来打印n的每一位,如下表示:
Print(n)
如果n是1234,那表示为
Print(1234)//打印1234的每一位
其中1234中的4可以通过%10得到,那么Print(1234)就可以拆分为两步:
1. Print(1234/10)//打印123的每一位
2. printf(1234%10)//打印4
完成上述2步,那就完成了1234每一位的打印
那么Print(123)又可以拆分为Print(123/10) + printf(123%10)
以此类推下去,就有:
Print(1234)
==>Print(123) + printf(4)
==>Print(12) + printf(3)
==>Print(1) + printf(2)
==>printf(1)
直到被打印的数字变成一位数的时候,就不需要再拆分,递归结束。那么代码也就比较清楚:
void Print(int n)
{
if(n>9)
{
Print(n/10);
}
printf("%d ", n%10);
}
int main()
{
int m = 0;
scanf("%d", &m);
Print(m);
return 0;
}
结果:
在这个解题的过程中,我们就是使用了大事化小的思路
用Print(1234)打印1234每一位,拆解为首先Print(123)打印123的每一位,再打印得到的4;用Print(123)打印123每一位,拆解为首先Print(12)打印12的每一位,再打印得到的3;直到Print打印的是一位数,直接打印就行。
3.递归的原理
由上述两个简答例子,我们得出函数递归的原理如下:
①每一级函数调用(即函数递归)都有自己的变量。
②每次函数调用都会返回一次。
③递归函数中位于递归调用之前的语句。
④递归函数中位于递归调用的之前的语句,均按被调函数的顺序执行。
⑤虽然每级递归都由自己的变量,但实际并没有拷贝函数的代码。
⑥递归函数必须包含能让递归调用停止的语句(如if语句)。
三、递归与迭代
递归是一种很好的编程技巧,但是与很多技巧一样也是可能会被误用的。就像举例1一样,看到推导的公式,很容易就写出递归的形式:
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
Fact()函数的确是可以产生正确的结果,但是在函数调用的过程中涉及一些运行时的开销。
在C语言中每一次函数调用,都要需要为本次函数调用在栈区申请一块内存空间来保存函数调用期间的各种局部变量的值,这块空间被称为运行时堆栈,或者函数栈帧。
函数不返回,函数对应的栈帧空间就一直被占用,所以如果函数调用中存在递归调用的话,每一次递归函数调用都会开辟属于自己的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。
所以如果采用函数递归的方式完成代码,递归层次太深就会浪费太多的栈帧空间,也可能引起栈溢出的问题。
所以如果不想使用递归就得想其他的办法。通常就是迭代的方式(也就是循环)。迭代的方法往往要比递归要好,不管是内存上还是效率上。比如计算n的阶乘,也是可以产生1~n的数字累计乘在一起的:
int Fact(int n)
{
int i = 0;
int ret = 1;
for(i=1; i<=n; i++)
{
ret *= i;
}
return ret;
}
事实上,我们看到的许多问题都是以递归的形式进行解释的,这只是因为它比非递归的形式更加清晰,但是这些问题的迭代实现往往比递归实现效率更高。当一个问题非常复杂时,难以使用迭代的方式实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。
四、经典问题:斐波那契数列
我们也能举出更加极端的例子,就像计算第n个斐波那契数是不适合使用递归求解的,但是斐波那契数的问题通过是使用递归的形式描述的。如下:
看到这公式,很容易诱导我们将代码写成递归的形式:
int Fib(int n)
{
if(n<=2)
return 1;
else
return Fib(n-1)+Fib(n-2);
}
当我们n输入为50的时候,需要很长时间才能算出结果,这个计算所花费的时间是让我们很难接受的,这也说明递归的写法是非常低效的,那是为什么呢?类比求n的阶乘的递归思想,我们可以将斐波那契数列递归思想展示出来:
例如我们求第50个斐波那契数,可以看到我们是先将Fib(50)拆成Fib(49)+Fib(48),再分别将Fib(49)和Fib(48)拆开,依次往下拆,仔细想想就知道这个运算量是非常大的,连计算机都要算这么长时间,可见递归的低效性。当我们用计数的方法统计第三个斐波那契数的计算次数,假设这次我们输入40:
#include <stdio.h>
int count = 0;
int Fib(int n)
{
if(n == 3)
count++;//统计第3个斐波那契数被计算的次数
if(n<=2)
return 1;
else
return Fib(n-1)+Fib(n-2);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
printf("\ncount = %d\n", count);
return 0;
}
我们可以看到,当计算第40个斐波那契数的时候,第三个斐波那契数就足足被计算了将近四千万次!这些计算是非常冗余的。所以形如斐波那契数列这种呈指数增长的计算使用递归是非常不明智的,一旦输入的数据过大就可能会导致程序崩溃。我们就得想迭代的方式解决。
我们知道斐波那契数的前2个数都是1,然后前2个数相加就是第3个数,那么我们从前往后,从小到大计算就行了:
int Fib(int n)
{
int a = 1;
int b = 1;
int c = 1;
while(n>2)
{
c = a+b;
a = b;
b = c;
n--;
}
return c;
}
有时候递归虽好,但是也会引入一些问题,所以我们一定不要迷恋递归,适可而止就好。
拓展学习
青蛙跳台阶问题
汉诺塔问题
以上2个问题都可以使用递归很好的解决,有兴趣可以研究。