【模板】并查集(洛谷P3367)
题目描述
如题,现在有一个并查集,你需要完成合并和查询操作。
输入格式
第一行包含两个整数 N,M ,表示共有 N 个元素和 M 个操作。
接下来 M 行,每行包含三个整数 Zi,Xi,Yi 。
当 Zi=1 时,将 Xi 与 Yi 所在的集合合并。
当 Zi=2 时,输出 Xi 与 Yi 是否在同一集合内,是的输出 `Y` ;否则输出 `N` 。
输出格式
对于每一个 Zi = 2 的操作,都有一行输出,每行包含一个大写字母,为 `Y` 或者 `N` 。
输入输出样例
输入 #1
```
4 7
2 1 2
1 1 2
2 1 2
1 3 4
2 1 4
1 2 3
2 1 4
```
输出 #1
```
N
Y
N
Y
```
说明/提示
对于 30% 的数据,N<=10,M<=20。
对于 70% 的数据,N<=100,M<=10^3。
对于 100% 的数据,1<=N<=10^4,1<=M<=2*10^5,1<=Xi,Yi<=N,Zi属于{1,2}。
思路
集合可以用树状图进行表达
用fa数组存储
fa[x]=y表示x的父结点为y
合并
找到A,B两个元素所在树的根节点,将A的根节点的父结点改为B的根节点
查找
找到A,B两个元素所在树的根节点,如果它们相同则表示A,B在同一集合
查根节点代码及路径压缩
int find(int a)
{
if (fa[a] == a)return a;
else return find(fa[a]);
}
未优化前如果合并次数越多,查找速度越慢
如果在查找图中将每个结点改为叶子结点,就不会出现速度越来越慢的情况
int find(int a)
{
if (fa[a] == a)return a;
else return f[a]=find(fa[a]);
}
最终代码
#include <stdio.h>
int fa[10005];
int find(int a)
{
if (fa[a] == a)return a;
else return fa[a]=find(fa[a]);//路径压缩
}
int main()
{
int x, y, z, n, m;
scanf("%d%d", &n, &m);
//初始化数组,使每个结点的根节点为自己
for (int i = 1; i <= n; i++)fa[i] = i;
for (int i = 1; i <= m; i++)
{
scanf("%d%d%d", &x, &y, &z);
if (x == 1)//合并
{
//将z树的根节点变为y树的根节点
fa[find(z)] = find(y);
}
else//查找
{
//根节点相同就为同一棵树
if (find(y)==find(z))printf("Y\n");
else printf("N\n");
}
}
return 0;
}