PTA 7-1 列车厢调度

题目:

        1  ======   <--移动方向
         /
 3 =====  
         \
        2  ======   -->移动方向 

大家或许在某些数据结构教材上见到过“列车厢调度问题”(当然没见过也不要紧)。今天,我们就来实际操作一下列车厢的调度。对照上方的ASCII字符图,问题描述如下:

有三条平行的列车轨道(1、2、3)以及1-3和2-3两段连接轨道。现有一列车厢停在1号轨道上,请利用两条连接轨道以及3号轨道,将车厢按照要求的顺序转移到2号轨道。规则是:

  • 每次转移1节车厢;
  • 处在1号轨道的车厢要么经过1-3连接道进入3号轨道(该操作记为"1->3"),要么经过两条连接轨道直接进入2号轨道(该操作记为"1->2");
  • 一旦车厢进入2号轨道,就不可以再移出该轨道;
  • 处在3号轨道的车厢,只能经过2-3连接道进入2号轨道(该操作记为"3->2");
  • 显然,任何车厢不能穿过、跨越或绕过其它车厢进行移动。

对于给定的1号停车顺序,如果经过调度能够实现2号轨道要求的顺序,则给出操作序列;如果不能,就反问用户 Are(你) you(是) kidding(凯丁) me(么)?

输入格式:

两行由大写字母组成的非空字符串,第一行表示停在1号轨道上的车厢从左到右的顺序,第二行表示要求车厢停到2号轨道的进道顺序(输入样例1中第二行CBA表示车厢在2号轨道的停放从左到右是ABC,因为C最先进入,所以在最右边)。两行字符串长度相同且不超过26(因为只有26个大写字母),每个字母表示一节车厢。题目保证同一行内的字母不重复且两行的字母集相同。

输出格式:

如果能够成功调度,给出最短的操作序列,每个操作占一行。所谓“最短”,即如果1->2可以完成的调度,就不要通过1->3和3->2来实现。如果不能调度,输出 "Are you kidding me?"

输入样例1:

ABC
CBA

输出样例1:

1->3
1->3
1->2
3->2
3->2

输入样例2:

ABC
CAB

输出样例2:

Are you kidding me?

 实现思路:

这道题主要是考查栈的使用,我认为这道题的难点在于你要弄清楚整个执行过程以及终止条件,我就是一开始没想清楚终止条件,然后就错了,所以写这道题的时候我建议画个流程图。

以下,我将1、2、3列车轨道叫A、B、C,

流程图如下:

我将A、B当作两个队列,C当作栈,比较的时所给的两个序列,但其实代码中并不存在这两个队列,只是用数组替代,这里只是便于理解,也是我写代码之前的想法,所以应该是先有这个流程图,后来再弄出的代码,我认为大家可以借鉴一下这种想法。

这里的圈1相当于函数1,圈2相当于函数2,我一开始是两个都弄了个终止条件,所以就乱七八糟了,因此这个终止条件一定要弄好,哪怕多判断一下也行。

C要存储列车必须用栈,其他两个无要求,我还设置一个队列来存储路线, 1 代表1->3  2代表1->2  3代表3->2,这里用数组也行。我是因为一直++很麻烦所以才用的队列,顺道还写了个出队时的输出函数,当然需要有一个标志位看看是否能匹配。

实现代码:

//1 队列  先入先出  出去的车厢不能再回来
//2 队列  遍历与要求相同    只进不出  一旦车厢进入2号轨道,就不可以再移出该轨道
//3 栈    先入后出
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX 1024
#define N 26
int c = 0;
int n = 0;
char A[N];
char B[N];
int length;
int flag = 0;
//栈
typedef struct {
	char data[MAX];
	int top;
} SeqStack;
SeqStack *s;
//初始化
SeqStack *initSeqStack() {
	SeqStack *q;
	q = (SeqStack*)malloc(sizeof(SeqStack));
	q->top = -1;
	return q;
}
//入栈
void enSeqStack(SeqStack* q, char x) {
	q->top += 1;
	q->data[q->top] = x;
}
//出栈
void outSeqStack(SeqStack* q) {
	q->top--;
}
//读取栈顶元素
char readSeqStack(SeqStack *q) {
	return q->data[q->top];
}
//判断为空
int empty(SeqStack* q) {
	if (q->top == -1) return 1;
	else return 0;
}
//队列
typedef struct {
	int data[MAX];
	int rear;
	int front;
} SeQueue;
SeQueue *sq;
//初始化
SeQueue* intiSeQueue() {
	SeQueue *q;
	q = (SeQueue*)malloc(sizeof(SeQueue));
	q->rear = q->front = -1;
	return q;
}
//入队
void enSeQueue(int x) {
	sq->rear += 1;
	sq->data[sq->rear] = x;
}
//出队并输出
void outSeQueue() {          //1 代表1->3  2代表1->2  3代表3->2
	int x, i;
	for (i = sq->front + 1; i < sq->rear; i++) {
		x = sq->data[i];
		if (x == 1) printf("1->3\n");
		else if (x == 2) printf("1->2\n");
		else if (x == 3) printf("3->2\n");
	}
	x = sq->data[i];
	if (x == 1) printf("1->3");
	else if (x == 2) printf("1->2");
	else if (x == 3) printf("3->2");
}
//函数
void hanshu1();
void hanshu2();
void hanshu1() {
	if (c == length ) {  //判断所有元素均已遍历
		if (empty(s)) {     //若栈同时为空,则说明成功
			outSeQueue();
			return ;
		} else {     //若栈不为空
			char ch = readSeqStack(s);
			if (ch == B[n])   hanshu2();//栈中元素与所给序列相等
			else {
				printf("Are you kidding me?");   //不等,失败
				return ;
			}
		}
	}
	if (A[c] != B[n]) { //不相等,入栈,看下一个元素
		enSeQueue(1);
		enSeqStack(s, A[c]);
		c++;
		hanshu1();
	} else {
		enSeQueue(2);   //出现相等的元素,直接到2中
		c++;
		n++;
		hanshu2();   //判断停留在3的车厢是否相等
	}
}
void hanshu2() {
	int x = empty(s);
	if (x == 1) {      //为空
		hanshu1();
	}
	if (x == 0) {
		char ch = readSeqStack(s);
		if (ch == B[n]) {    //相等
			enSeQueue(3);
			outSeqStack(s);
			n++;
			hanshu2();
		} else   hanshu1();   //不等
	}
}
int main() {
	scanf("%s", A);
	scanf("%s", B);
	s = initSeqStack();
	sq = intiSeQueue();
	length = strlen(A);
	hanshu1();
	return 0;
}

### PTA 调度算法实现 #### 问题背景 PTA 调度问题是经典的计算机科学问题之一,通常涉及如何通过有限数量的平行轨道对车进行重新排。该问题的核心在于设计一种高效的调度策略,使得车能够按照指定的目标顺序从出口离开。 #### 算法思路分析 为了满足题目中的需求——即让车按特定顺序(如递增或递减)从出口离开,可以采用 **动态规划 + 单调栈/队** 的方式解决此问题。具体来说: - 每条平行轨道可视为一个单调序存储器。 - 当新车到达时,尝试将其放置到已有的某条轨道上,或者开辟一条新的轨道。 - 如果当前车无法加入任何现有轨道,则需新增加一条轨道以容纳它。 这种逻辑可以通过维护一组单调递减(或递增)的子序来模拟多条轨道的行为[^1]。 #### 动态规划与优化 对于大规模输入情况下的性能瓶颈问题,可通过引入二分查找技术加速寻找适合插入的位置过程。例如,在更新过程中利用 `std::lower_bound` 函数快速定位目标位置从而减少不必要的线性扫描次数[^2]。 以下是基于上述原理的一个C++实现版本: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int main(){ int n; cin >> n; //读取火车总数 vector<int> trains(n); for(auto &t :trains){ cin>>t;//依次读入各辆火车编号 } vector<int> tails; //记录每条轨道最后一个车厢号码(相当于dp数组) for(const auto& t:trains){ // 使用二分查找找到第一个大于等于当前火车号的位置 auto it = lower_bound(tails.begin(),tails.end(),t,greater<>()); if(it==tails.end()){ tails.push_back(t); //如果没有合适位置则新开辟一条轨道 } else{ *it=t; //否则替换掉对应位置上的较大值保持最小化原则 } } cout<<tails.size()<<endl; //最终结果为所需最少轨道数 return 0; } ``` #### 关键点解释 1. 上述程序采用了贪心的思想配合二分搜索技巧实现了高效求解。 2. 时间复杂度主要取决于两部分:一是外层循环遍历所有火车耗时O(N),二是内部执行二分查找操作平均时间成本约为O(logM)(其中M表示最大可能使用的轨道数目)。因此整体效率较高,适用于处理较大的数据规模场景下[^3]。 #### 特殊案例说明 考虑下面这样一个例子: 假设初始进入次序为 `{5,4,3,2,1}` ,期望输出结果应为 `1` 条轨道即可完成整个调度流程;而如果是相反方向排序比如 `{1,2,3,4,5}`, 那么理论上就需要准备多达五条独立路径才能达成目的[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值