第一章人工智能概述
1.0 引言:
对人工智能的认识:
一些人认为,人工智能等同于任何由非生命系统实现的智能。他们坚持认为,即使这类智能行为的实现与人类智能的依赖机制不同也无关紧要。而另一些人则认为,人工智能系统必须能够模仿人类智能。
智能的定义:
智能是个体从经验中学习、正确推理、记忆重要信息,以及应对日常生活需求的认知能力
可以说是高效以及有效的思维。
“人工智能是一门科学,这门科学让机器做人类需要智能才能完成的事。”
--拉斐尔
1.1 图灵测试:
1.1.1图灵测试的定义
图灵测试的原始形式是,一个男人和一个女人坐在帘子的后面,询问者必须同时正确地识别出两人的性别。由此出现第二个测试,这里的机器扮演男性的角色,偶尔会撒谎,但人一直是诚实的。
1.1.2 图灵测试的争议和批评
布洛克的批评:理论上机器可以通过储存图灵测试的答案来通过测试。
塞尔的中文房间论证:一个房间里的那个人不懂中文,但是拥有一本详细的中文规则手册,他仍可通过测试,虽然回答可能是正确的,但此人不懂中文。 这认为用语言处理输入和产生输出并不等同于理解或智力。
1.2 强人工智能与弱人工智能:
在电子子工程、机器人及相关领域,人工智能项目主要关注的是得到令人满意的执行结果。这种方法被称为弱人工智能。
强人工智能是指具有真正的认知能力和意识的系统,类似于人类智能,具有理解和从经验中学习的能力。
1.3 启发式方法:
启发式方法与算法的不同:
算法是预先设定的用于解决问题的一组规则,其输出是完全可预测的。而使用启发式方法,则可以但不能保证得到一个不错的结果。
1.4 识别适用人工智能来求解问题:
人工智能适合解决的问题:
(1)人工智能问题往往是大型的问题。
(2)它们在计算上非常复杂,并且不能通过简单直接的算法来解决。
(3)人工智能问题及其领域倾向于收录大量的人类专门知识,特别是在用强人工智能方法解决问题的情况下,更是如此。强人工智能方法指的是拥有大量领域知识并能够解释其推理过程的系统。
1.5 应用和方法:
与外界交互是系统展示智能的重要途径。
下面列出了上述人工智能研究领域的一些应用。
搜索算法和拼图问题。
二人博弈。
自动推理。
产生式系统和专家系统。
细胞自动机。
神经计算。
遗传算法。
知识表示。
不确定性推理.
1.6 人工智能的早期历史:
最强大的人工智能基础来自于亚里士德建立的逻辑前提论。亚里士多德建立了科学思维和严密思考的模式,这成了当今科学方法的标准。他对物质和形式的区分是当今计算机科学中最重要的概念——数据抽象的先驱性工作。亚里士多德也强调了人类推理的能力。
13世纪的西班牙隐士和学者雷蒙德·卢尔可能是第一个尝试将人类思维过程机械化的人。他的工作早于布尔5个多世纪。卢尔是一名虔诚的基督徒,为了证明基督教的教义是真的,他建立了一套基于逻辑的系统。
两个多世纪以后,库尔特·戈德尔提出著名的“我思古我在”,促使了当代身心在本质上是相同的这一观点的提出。
1.7 人工智能的近期历史到现在:
计算机博弈激起了人们对人工智能的兴趣,促进了人工智能的发展。
专家系统 专家系统具有许多特性,这使得其十分适合于人工智能的研究和开发。这些特性包括知识库与推理机的分离、系统的知识超过任何专家或所有专家的知识的总和、知识与搜索技术的关系、推理以及不确定性等等。
神经计算 弗兰克·罗森布拉特开发了一种名为感知器学习规则的迭代算法。
20世纪80年代初,霍普菲尔德的异步网络模型使用能量函数找到了NP完全问题的近似解。20世纪80年代中期,人工智能领域出进现了反向传播算法,这是一种适合于多层网络的学习算法。
进化计算 基于符号的方法依赖于启发式方法和表示范式,罗德尼·布鲁克斯放弃了基于符号的方法,转用自己的方法成功地创造了一个人类水平的人工智能。
自然语言处理
生物信息学生物信息学是将计算机科学的算法和技术应用于分子生物学的一门新兴学科,主要关注生物数据的管理和分析。
1.8 新千年人工智能的发展
如今人工智能的使用已经渗透到生活的各个方面。